1368
K. S. Ra6ikumar, D. Farquhar / Tetrahedron Letters 43 (2002) 1367–1368
crude reaction mixtures required the addition of triethyl-
amine to neutralize acid, and column chromatography
on silica gel to isolate pure product.17
Acknowledgements
This work was supported by a grant from the Univer-
sity of Texas System Cancer Center Drug Discovery
Group and by NIH Cancer Center Support Grant
CA16672.
To avoid sensitive work up conditions and chromato-
graphic purification procedures, an alternative
approach was sought for the selective deprotection of
the trans-acetonide group of 1,2:4,5-diacetonides. Since
the deprotection of acetonides has been reported18 with
aqueous acetic acid, attempts were made to selectively
cleave the trans-acetonide of 3a using a weakly acidic
ion-exchange resin, Amberlite IRC-50, in CHCl3/
MeOH (2:1) solution. No reaction was evident after 24
h at room temperature. However, when a strongly
acidic ion-exchange resin, Amberlite 120 H+, was sub-
stituted, smooth cleavage of the trans-acetonide
occurred and the reaction was complete in 24 h. The
product, 4a, was isolated in near quantitative yield by
filtration of the reaction mixture and evaporation of the
solvent. No traces of the cis-diol, the tetradiol, or the
starting material were apparent. In a similar manner,
3b–d were quantitatively converted over 24–48 h to the
corresponding trans-diols, 4b–d. This mild and simple
procedure avoids the generation of unwanted by-prod-
ucts in the selective deprotection of the trans-acetonide
of myo-inositol 1,2:4,5-diacetonides and, therefore, pre-
cludes the requirement for chromatographic purifica-
tion procedures. It should be generally useful in the
field of myo-inositol chemistry.
References
1. Billington, D. C. The Inositol Phosphates: Chemical Syn-
thesis Biological Significance; New York, 1993.
2. Reitz, A. B. Inositol Phosphate Derivatives: Synthesis,
Biochemistry, Therapeutic Potential; ACS Symposium
Series 463, 1991.
3. Potter, B.; Lampe, D. Angew. Chem., Int. Ed. Engl. 1995,
34, 1933–1972.
4. Berridge, M. Am. J. Nephrol. 1997, 17, 1–11.
5. Rameh, L. E.; Cantley, L. C. J. Biol. Chem. 1999, 274,
8347–8350.
6. Leevers, S. J.; Vanhaesebroeck, B.; Waterfield, M. D.
Curr. Opin. Cell. Biol. 1999, 11, 219–225.
7. Vanhaesebroeck, B.; Alessi, D. R. Biochem. J. 2000, 346,
561–576.
8. Johnson, S. C.; Dahl, J.; Shih, T. L.; Schedler, D. J.;
Anderson, L.; Benjamin, T. L.; Baker, D. C. J. Med.
Chem. 1993, 36, 3628–3635.
9. Qiao, L.; Nan, F.; Kunkel, M.; Gallegos, A.; Powis, G.;
Kozikowski, A. P. J. Med. Chem. 1998, 41, 3303–3306.
10. Hu, Y.; Meuillet, E. J.; Berggren, M.; Powis, G.;
Kozikowski, A. P. Bioorg. Med. Chem. Lett. 2001, 11,
173–176.
11. Powis, G.; Aksoy, I. A.; Melder, D. C.; Aksoy, S.;
Eichinger, H.; Fauq, A. H.; Kozikowski, A. P. Cancer
Chemotherapy Pharmacol. 1991, 29, 95–104.
12. Gigg, J.; Gigg, R.; Payne, S.; Conant, R. Carbohydr. Res.
1985, 142, 132–134.
13. Greene, T. W.; Wuts, P. G. Protective Groups in Organic
Synthesis; Wiley-Interscience, 1999; pp. 207–215.
14. Kozikowski, A. P.; Fauq, A. H.; Wilcox, R. A.;
Nahorski, S. R. J. Org. Chem. 1994, 59, 2279–2281.
15. Kozikowski, A. P.; Fauq, A. H. J. Am. Chem. Soc. 1990,
112, 7403–7404.
Selective deprotection of a myo-inositol 4,5-trans-ace-
tonide in the presence of a 1,2-cis-acetonide: Amberlite-
120 (H+) resin was washed successively with 1N H2SO4,
deionized water, acetone, and air-dried. 3-O-Tosyl-6-O-
benzyl-1,2:4,5-isopropylidene myo-inositol, 3b (0.50 g, 1
mmol) was dissolved in CHCl3/MeOH (2:1, 20 mL) and
Amberlite-120 (H+) resin (0.5 g) was added. The reac-
tion was stirred at room temperature under an inert
(argon) atmosphere for 36 h. The mixture was filtered
through Celite and the solvent was evaporated in
vacuo. The pure diol, 3-O-tosyl-6-O-benzyl-1,2-iso-
propylidene myo-inositol, was obtained as a white solid
1
(0.455 g, 98%). Mp 153°C. H NMR (CDCl3) l 1.23 (s,
3H), 1.45 (s, 3H), 2.44 (s, 3H), 2.72 (d, J=2.68 Hz,
1H), 2.78 (d, J=2.23 Hz, 1H), 3.43 (td, J=7.05, 2.00
Hz, 1H), 3.49–3.54 (dd, J=9.40, 6.68 Hz, 1H), 3.94 (td,
J=9.35, 2.45 Hz, 1H), 4.15 (t, J=5.93 Hz, 1H), 4.33 (t,
J=4.61 Hz, 1H), 4.64 (d, J=9.54 Hz, 1H), 4.66 (d,
J=11.37 Hz, 1H), 4.89 (d, J=11.52 Hz, 1H), 7.28–7.35
(m, 7H), 7.85 (d, J=8.26 Hz, 2H); 13C NMR (CDCl3)
l 21.66 (q), 25.63 (q), 27.72 (q), 69.97 (t), 72.91 (d),
73.31 (d), 74.26 (d), 78.92 (d), 79.11 (d), 81.05 (d),
110.42 (s), 127.91 (d), 128.01 (d), 128.05 (d), 128.44 (d),
129.74 (d), 133.69 (s), 137.82 (s), 145.05 (s).
16. Gigg, J.; Gigg, R.; Payne, S.; Conant, R. J. Chem. Soc.,
Perkin Trans. 1 1987, 423–429.
17. Electropositive substituents such as benzyl or TBDPSi
underwent trans-acetonide deprotection faster in the
presence of catalytic amounts of acetyl chloride in
CHCl3/MeOH than electron-withdrawing substituents
such as tosyl or benzoyl groups.
18. Lewbart, M. L.; Schneider, J. J. J. Org. Chem. 1969, 34,
3505–3512.