RESEARCH
| RESEARCH ARTICLE
All calculations were performed with the
Gaussian 09 package (51). Geometry optimiza-
tions were performed with B3LYP (52, 53) and
the 6-31G(d) basis set. Normal vibrational mode
analysis at the same level of theory confirmed
that the optimized structures are minima (zero
imaginary frequency) or saddle points (one ima-
ginary frequency). Single-point energies and sol-
vent effects in dichloromethane were computed
with the dispersion-corrected density functional
method B3LYP-D3 (54) with a Becke-Johnson
(BJ) damping function (55) and the 6-311+G (d,p)
basis set using the CPCM solvation model (56, 57).
The relative energies with ZPE corrections and free
energies (at 298.15 K) are in kcal/mol. Single-point
energies were also evaluated within the CPCM
model using the M06-2X (58), wB97X-D (59), and
B3LYP functionals to compare the stereoselectiv-
ities computed with or without dispersion correc-
tions. DFT-optimized structures are illustrated
using CYLView (60).
MedChemComm 3, 1189–1218 (2012). doi: 10.1039/
16. H. Cao, H. Liu, A. Dömling, Efficient multicomponent reaction
synthesis of the schistosomiasis drug praziquantel. Chem. Eur. J.
17. H. Liu, S. William, E. Herdtweck, S. Botros, A. Dömling, MCR
synthesis of praziquantel derivatives. Chem. Biol. Drug Des.
18. B. B. Touré, D. G. Hall, Natural product synthesis using
multicomponent reaction strategies. Chem. Rev. 109,
19. A. Endo et al., Total synthesis of ecteinascidin 743. J. Am.
39. D. Kampen, C. M. Reisinger, B. List, Chiral Brønsted acids for
asymmetric organocatalysis. Top. Curr. Chem. 291, 395–456
40. D. Parmar, E. Sugiono, S. Raja, M. Rueping, Complete field
guide to asymmetric BINOL-phosphate derived Brønsted
acid and metal catalysis: History and classification by
mode of activation; Brønsted acidity, hydrogen bonding, ion
pairing, and metal phosphates. Chem. Rev. 114, 9047–9153
41. T. Akiyama, K. Mori, Stronger Brønsted acids: Recent progress.
Chem. Rev. 115, 9277–9306 (2015). doi: 10.1021/
42. S. C. Pan, B. List, Catalytic three-component Ugi reaction.
Angew. Chem. Int. Ed. 47, 3622–3625 (2008). doi: 10.1002/
43. T. Yue, M.-X. Wang, D.-X. Wang, G. Masson, J. Zhu, Brønsted
acid catalyzed enantioselective three-component
reaction involving the a addition of isocyanides to imines.
Angew. Chem. Int. Ed. 48, 6717–6721 (2009). doi: 10.1002/
44. Y. Zhang et al., Chiral phosphoric acid catalyzed asymmetric
Ugi reaction by dynamic kinetic resolution of the primary
multicomponent adduct. Angew. Chem. Int. Ed. 55, 5282–5285
45. T. Hashimoto, H. Kimura, Y. Kawamata, K. Maruoka,
A catalytic asymmetric Ugi-type reaction with acyclic
azomethine imines. Angew. Chem. Int. Ed. 51, 7279–7281
46. P. R. Andreana, C. C. Liu, S. L. Schreiber, Stereochemical
control of the Passerini reaction. Org. Lett. 6, 4231–4233
47. J. P. Reid, J. M. Goodman, Goldilocks catalysts:
Computational insights into the role of the 3,3′-substituents on
the selectivity of BINOL-derived phosphoric acid catalysts.
J. Am. Chem. Soc. 138, 7910–7917 (2016). doi: 10.1021/
48. J. P. Reid, L. Simón, J. M. Goodman, A practical guide for
predicting the stereochemistry of bifunctional
phosphoric acid catalyzed reactions of imines. Acc. Chem. Res.
49. S. E. Wheeler, T. J. Seguin, Y. Guan, A. C. Doney,
Noncovalent interactions in organocatalysis and the prospect
of computational catalyst design. Acc. Chem. Res. 49,
50. R. Maji, P. A. Champagne, K. N. Houk, S. E. Wheeler, Activation
mode and origin of selectivity in chiral phosphoric acid-
catalyzed oxacycle formation by intramolecular oxetane
desymmetrizations. ACS Catal. 7, 7332–7339 (2017).
51. Gaussian 09, rev. D.01 (Gaussian Inc., 2013).
52. A. D. Becke, Density‐functional thermochemistry. III. The role
of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
53. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron
density. Phys. Rev. B 37, 785–789 (1988). doi: 10.1103/
54. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and
accurate ab initio parametrization of density functional
dispersion correction (DFT-D) for the 94 elements H-Pu.
55. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping
function in dispersion corrected density functional theory.
J. Comput. Chem. 32, 1456–1465 (2011). doi: 10.1002/
20. A. Dömling, I. Ugi, Multicomponent reactions with isocyanides.
Angew. Chem. Int. Ed. 39, 3168–3210 (2000). doi: 10.1002/
21. A. Dömling, Recent developments in isocyanide based
multicomponent reactions in applied chemistry. Chem. Rev.
22. J. Zhu, Recent developments in the isonitrile-based
multicomponent synthesis of heterocycles. Eur. J. Org. Chem.
23. I. Akritopoulou-Zanze, S. W. Djuric, Recent advances in the
development and applications of post-Ugi transformations.
24. U. K. Sharma, N. Sharma, D. D. Vachhani, E. V. Van der Eycken,
Metal-mediated post-Ugi transformations for the
construction of diverse heterocyclic scaffolds. Chem. Soc. Rev.
25. L. A. Wessjohann, D. G. Rivera, O. E. Vercillo, Multiple
multicomponent macrocyclizations (MiBs): A strategic
development toward macrocycle diversity. Chem. Rev. 109,
26. L. A. Wessjohann, R. A. W. Neves Filho, A. R. Puentes,
M. C. Morejon, in Multicomponent Reactions in Organic
Synthesis, J. Zhu, Q. Wang, M.-X. Wang, Eds. (Wiley, 2015),
pp. 231–264.
27. R. Kakuchi, Multicomponent reactions in polymer synthesis.
Angew. Chem. Int. Ed. 53, 46–48 (2014). doi: 10.1002/
28. A. Sehlinger, M. A. R. Meier, Passerini and Ugi multicomponent
reactions in polymer science. Adv. Polym. Sci. 269, 61–86
29. Q. Wang, D.-X. Wang, M.-X. Wang, J. Zhu, Still unconquered:
Enantioselective Passerini and Ugi multicomponent reactions.
Acc. Chem. Res. 51, 1290–1300 (2018). doi: 10.1021/
30. L. Banfi, A. Basso, G. Guanti, R. Riva, in Multicomponent
Reactions, J. Zhu, H. Bienaymé, Eds. (Wiley, 2005), pp. 1–32.
31. D. J. Ramón, M. Yus, Asymmetric multicomponent reactions
(AMCRs): The new frontier. Angew. Chem. Int. Ed.
32. S. S. van Berkel, B. G. M. Bögels, M. A. Wijdeven,
B. Westermann, F. P. J. T. Rutjes, Recent advances in
asymmetric isocyanide-based multicomponent reactions.
Eur. J. Org. Chem. 2012, 3543–3559 (2012). doi: 10.1002/
33. T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Enantioselective
Mannich-type reaction catalyzed by a chiral Brønsted
acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).
34. D. Uraguchi, M. Terada, Chiral Brønsted acid-catalyzed
direct Mannich reactions via electrophilic activation.
J. Am. Chem. Soc. 126, 5356–5357 (2004). doi: 10.1021/
35. M. R. Monaco et al., Activation of carboxylic acids in
asymmetric organocatalysis. Angew. Chem. Int. Ed.
REFERENCES AND NOTES
1. I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, Versuche mit
isonitrilen. Angew. Chem. 71, 386 (1959).
2. C. C. Musonda et al., Application of multi-component reactions
to antimalarial drug discovery. Part 1: Parallel synthesis and
antiplasmodial activity of new 4-aminoquinoline Ugi adducts.
Bioorg. Med. Chem. Lett. 14, 3901–3905 (2004). doi: 10.1016/
3. A. Dömling, S. Achatz, B. Beck, Novel anti-tuberculosis agents
from MCR libraries. Bioorg. Med. Chem. Lett. 17, 5483–5486
4. H. G. F. Richter et al., Discovery of novel and orally active
FXR agonists for the potential treatment of dyslipidemia &
diabetes. Bioorg. Med. Chem. Lett. 21, 191–194 (2011).
5. H. G. F. Richter et al., Optimization of a novel class of
benzimidazole-based farnesoid X receptor (FXR) agonists to
improve physicochemical and ADME properties. Bioorg. Med.
Chem. Lett. 21, 1134–1140 (2011). doi: 10.1016/
6. S. Nayyab et al., Diamide inhibitors of the bacillus subtilis
N-acetylglucosaminidase LytG that exhibit antibacterial
activity. ACS Infect. Dis. 3, 421–427 (2017). doi: 10.1021/
7. J. Almaliti et al., Dudawalamides A-D, antiparasitic cyclic
depsipeptides from the marine cyanobacterium moorea
producens. J. Nat. Prod. 80, 1827–1836 (2017). doi: 10.1021/
8. G. Gokel, G. Lüdke, I. Ugi, in Isonitrile Chemistry, I. Ugi, Ed.
(Academic Press, 1971), pp. 145–199.
9. N. Chéron, R. Ramozzi, L. El Kaïm, L. Grimaud,
P. Fleurat-Lessard, Challenging 50 years of established
views on Ugi reaction: A theoretical approach.
J. Org. Chem. 77, 1361–1366 (2012). doi: 10.1021/
10. C. Iacobucci, S. Reale, J.-F. Gal, F. De Angelis, Insight into the
mechanisms of the multicomponent Ugi and Ugi-Smiles
reactions by ESI-MS(/MS). Eur. J. Org. Chem. 2014,
11. G. A. Medeiros et al., Probing the mechanism of the Ugi
four-component reaction with charge-tagged reagents by
ESI-MS(/MS). Chem. Commun. 50, 338–340 (2014).
12. I. Akritopoulou-Zanze, Isocyanide-based multicomponent
reactions in drug discovery. Curr. Opin. Chem. Biol.
13. M. Colombo, I. Peretto, Chemistry strategies in early drug
discovery: An overview of recent trends. Drug Discov. Today
14. A. Dömling, W. Wang, K. Wang, Chemistry and biology of
multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).
56. V. Barone, M. Cossi, Quantum calculation of molecular
energies and energy gradients in solution by a conductor
solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).
57. M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies,
structures, and electronic properties of molecules in solution
with the C-PCM solvation model. J. Comput. Chem. 24,
58. Y. Zhao, D. G. Truhlar, The M06 suite of density functionals
for main group thermochemistry, thermochemical kinetics,
noncovalent interactions, excited states, and transition
elements: Two new functionals and systematic testing
of four M06-class functionals and 12 other functionals.
Theor. Chem. Acc. 120, 215–241 (2008). doi: 10.1007/
36. M. R. Monaco, S. Prévost, B. List, Organocatalytic asymmetric
hydrolysis of epoxides. Angew. Chem. Int. Ed. 53, 8142–8145
37. M. R. Monaco, G. Pupo, B. List, Phosphoric acid based
heterodimers in asymmetric catalysis. Synlett 27, 1027–1040
15. P. Slobbe, E. Ruijter, R. V. A. Orru, Recent applications of
multicomponent reactions in medicinal chemistry.
38. T. Akiyama, Stronger Brønsted acids. Chem. Rev. 107,
Zhang et al., Science 361, eaas8707 (2018)
14 September 2018
8 of 9