Journal of the American Chemical Society
Communication
Notes
after cell uptake. The enzymatic activity of βGal can be detected
by a colorimetric assay through the incubation of the treated
cells for 24 h with 5-bromo-4-chloro-3-indolyl-β-D-galactopyr-
anoside (X-gal), a substrate for βGal. Cellular delivery of βGal
is accomplished by assembling iminobiotinylated βGal
(iminobiotin-βGal) and DHSA-Av. Confocal microscopy
shows that (3) is internalized into A549 cells (Figure S14
(SI)). The enzymatic activity of βGal after membrane
transduction is investigated by incubating A549 cells that are
pretreated with (3) for a further 24 h with X-gal. Upon
enzymatic hydrolysis of the substrate X-gal to galactose and 5-
bromo-4-chloro-3-hydroxyindole by βGal, the color changes
from colorless to blue, thus demonstrating the successful
intracellular delivery of the protein. No color change is
observed when cells were treated with βGal alone (Figure
5b). Our findings clearly indicate that the catalytic activity of
βGal is preserved upon internalization.
In summary, we have demonstrated a versatile, supra-
molecular approach to derive defined heteroassembly Janus-
like fusion proteins. A high degree of spatial control is achieved
using solid phase immobilization based on the pH responsive
iminobiotin−avidin interaction. Following this approach, five
precision Janus-like fusion conjugates have been prepared: Two
noncleavable, biotin-containing cargoes and three pH-cleavable,
iminobiotin-containing cargoes, which are the first examples of
pH responsive Janus-like fusion proteins based on the
iminobiotin−avidin interaction. Our strategy allows the non-
covalent conjugation of both native and chemically post-
modified proteins, which grants access to greater diversity and
expands the toolbox nature offers, as exemplified by the
dendronized transporter protein DHSA. Notably, we have
demonstrated (a) through FRET studies and in vitro assays that
the iminobiotin moiety can serve as a pH trigger for the release
of the cargo proteins, iminobiotin-HSA and -C2I, (b) that the
DHSA-Av carrier can transport the cargo proteins into cells and
the cargo proteins are released in the acidic tumor environ-
ment, as exemplified by the HSA derivatives, and (c) that the
catalytic activity of the carrier-released iminobiotin-C2I and the
iminobiotin-βGal that is internalized into cells is preserved.
One could envision programming fusion proteins combining
cell- or tissue-selectivity and intracellular release at acidic pH
found in the tumor microenvironment, which is highly
attractive to achieve targeted delivery and controlled release
of functional proteins, e.g., catalytic component of toxins. The
mix-and-match strategy described opens unique opportunities
to access macromolecular biohybrid architectures of high
structural definition and biological activity and in this way
complements protein ligation and recombinant protein
expression techniques.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors are grateful to the financial support from the
BMBF Project Biotechnologie 2020+, ERC Synergy Grant
319130-BioQ and the German Research Foundation (DFG
Grant BA 2087/2-2 to H.B. and SFB 625 to T.W.). S.L.K. is
grateful to the Alexander von Humboldt Foundation for
providing a research fellowship.
REFERENCES
■
(1) Tannock, I. F.; Rotin, D. Cancer Res. 1989, 49, 4373−4384.
(2) Li, C.; Hu, J.; Liu, S. Soft Matter 2012, 8, 7096−7102.
(3) Andrady, C.; Sharma, S. K.; Chester, K. A. Immunotherapy 2011,
3, 193−211.
(4) Huang, C. Curr. Opin. Biotechnol. 2009, 20, 692−699.
(5) Hudak, J. E.; Barfield, R. M.; de Gregory, W., H.; Grob, P.;
Nogales, E.; Bertozzi, C. R.; Rabuka, D.; de Hart, G. W. Angew. Chem.,
Int. Ed. 2012, 51, 4161−4165.
(6) Hutchins, B. M.; Kazane, S. A.; Staflin, K.; Forsyth, J. S.; Felding-
Habermann, B.; Smider, V. V.; Schultz, P. G. Chem Biol. 2011, 18,
299−303.
(7) Schoffelen, S.; Beekwilder, J.; Debets, M. F.; Bosch, D.; van Hest,
J. C. Bioconjugate Chem. 2013, 24, 987−996.
(8) Gangar, A.; Fegan, A.; Kumarapperuma, S. C.; Wagner, C. R. J.
Am. Chem. Soc. 2012, 134, 2895−2897.
(9) Komatsu, T.; Terada, H.; Kobayashi, N. Chem.Eur. J. 2011, 17,
1849−1854.
(10) Frokjaer, S.; Otzen, D. E. Nat. Rev. Drug Discovery 2005, 4, 298−
306.
(11) Padilla, J. E.; Colovos, C.; Yeates, T. O. Proc. Natl. Acad. Sci. U.
S. A. 2001, 98, 2217−2221.
(12) Sakahara, H.; Saga, T. Adv. Drug Delivery Rev. 1999, 37, 89−101.
(13) Liu, G.; Hnatowich, D. J. Bioconjugate Chem. 2008, 19, 2095−
2104.
(14) Aslan, F. M.; Yu, Y.; Mohr, S. C.; Cantor, C. R. Proc. Natl. Acad.
Sci. U. S. A. 2005, 102, 8507−8512.
(15) Wu, S.-C.; Wong, S.-L. J. Biol. Chem. 2005, 280, 23225−23231.
(16) Fudem-Goldin, B.; Orr, G. A. In Avidin Biotin Technology:
Methods in Enzymology; Wilchek, M., Bayer, E. A., Eds.; Academic
Press: San Diego, 1990.
(17) Cao, Y.; Bai, G.; Zhang, L.; Bai, F.; Yang, W. Artif. Cells, Blood
Substitutes, Immobilization Biotechnol. 2006, 34, 487−500.
(18) Poon, Z.; Chang, D.; Zhao, X.; Hammond, P. T. ACS Nano
2011, 5, 4284−4292.
(19) Wojtkowiak, J. W.; Rothberg, J. M.; Kumar, V.; Schramm, K. J.;
Haller, E.; Proemsey, J. B.; Lloyd, M. C.; Sloane, B. F.; Gillies, R. J.
Cancer Res. 2012, 72, 3938−3947.
(20) Kale, A. A.; Torchilin, V. P. Bioconjugate Chem. 2007, 18, 363−
370.
(21) Kuan, S. L.; Stockle, B.; Reichenwallner, J.; Ng, D. Y. W.; Wu,
Y.; Doroshenko, M.; Koynov, K.; Hinderberger, D.; Mullen, K.; Weil,
T. Biomacromolecules 2013, 14, 367−376.
(22) Muller, D. J.; Janovjak, H.; Lehto, T.; Kuerschner, L.; Anderson,
K. Prog. Biophys. Mol. Biol. 2002, 79, 1−43.
(23) Gaczynska, M.; Osmulski, P. A. Curr. Opin. Colloid Interface Sci.
2008, 13, 351−367.
(24) Kenworthy, A. K. Methods 2001, 24, 289−296.
(25) Aktories, K.; Barmann, M.; Ohishi, I.; Tsuyama, S.; Jakobs, K.;
̈
̈
ASSOCIATED CONTENT
̈
■
S
* Supporting Information
Supporting figures (Scheme 1, Chart S1, Figures S1−15) and
methods. This material is available free of charge via the
̈
Habermann, H. E. Nature 1986, 322, 390−392.
(26) Aktories, K.; Barth, H. Eur. J. Cell Biol. 2011, 90, 944−950.
AUTHOR INFORMATION
■
(27) Heine, K.; Pust, S.; Enzenmuller, S.; Barth, H. Infect. Immun.
̈
2009, 76, 4600−4608.
(28) Barth, H.; Blocker, D.; Behlke, J.; Bergsma-Schutter, W.;
Brisson, A.; Benz, R.; Aktories, K. J. Biol. Chem. 2000, 275, 18704−
18711.
Corresponding Author
̈
Author Contributions
∥S.L. Kuan and D.Y.W. Ng contributed equally.
17257
dx.doi.org/10.1021/ja4084122 | J. Am. Chem. Soc. 2013, 135, 17254−17257