Organometallics
Article
CHortho‑Py) ppm; 13C{1H} NMR (CD2Cl2, 101 MHz) δ 29.2 (CH3 tBu),
37.2 (CtBu), 55.8 (OCH3), 112.0 (CH), 119.2 (CH), 120.1(CHIm‑4/5),
124.9 (CHPy), 128.8 (CH), 130.1 (CH), 137.9 (CPy), 152.2
(CHPy‑ortho), 153.2 (CHPy‑ortho), 158.3 (NCN) ppm; ESI-MS m/z
(%) 525.3 [M − 2I − 2H − PyCl]+; FT-IR (ATR) 2953, 2923, 2855,
1728, 1601, 1589, 1565, 1492, 1460, 1422, 1403, 1368, 1332, 1288,
1243, 1198, 1185, 1164, 1108, 1051, 1031, 931, 908, 852, 842, 797,
778, 746, 729, 689, 627 cm−1. Anal. Calcd for C32H40ClI2N3O2Pd: C,
42.97; H, 4.51; N, 4.70. Found: C, 42.71; H, 4.41; N, 4.70.
(R,R)-13. The general procedure was applied starting from PdCl2
(10.1 mg, 0.056 mmol), the α-naphthyl-unsaturated imidazolium salt
(39 mg, 0.066 mmol), K2CO3 (45 mg, 0.25 mmol), and 3-
chloropyridine (∼0.5 mL). For the anion exchange NaI (∼40 mg,
0.28 mmol) was used and the product was obtained as an orange solid
(0−1%) or by PTLC with pentane (several elutions were sometimes
required). Enantiomeric ratios were checked by chiral HPLC in 2-
propanol or by SFC in Et2O.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, figures, a table, and CIF files giving experimental details
and characterization data, 1H NMR and 13C{1H} NMR spectra
for products of catalysis, optimization of catalytic reactions,
HPLC chromatograms, and X-ray data for 13 and 14. This
material is available free of charge via the Internet at http://
contain crystallographic data.
(40 mg, 75%). Yellow crystals were obtained by slow diffusion of n-
20
pentane into a concentrated solution in dichloromethane: [α]D
=
AUTHOR INFORMATION
Notes
The authors declare no competing financial interest.
+183.6° (c = 5.8 mg/mL, CH2Cl2); mp >250 °C dec; 1H NMR
(CD2Cl2, 400 MHz) δ 1.20 (s, 18H, CH3 tBu), 6.99 (dd, JHH = 8 Hz,
JHH = 5 Hz, 1H, CHPy), 7.27 (s, 2H, CHtBu), 7.30 (m, 2H, CHAr), 7.51
(m, 6H), 7.60 (ddd, JHH = 1 Hz, JHH = 2 Hz, JHH = 8 Hz, 1H, CHPy),
7.79 (dd, JHH = 1 Hz, JHH = 5 Hz, 1H, CHPy), 7.86 (d, JHH = 8 Hz, 2H,
CHAr), 7.89 (s, 2H, CHIm‑4/5), 7.93−8.00 (m, 3H, 2CHAr + 1 CHPy),
8.77 (d, JHH = 8 Hz, 2H, CHAr) ppm; 13C{1H} NMR (CD2Cl2, 101
MHz) δ 29.6 (CH3 tBu), 37.5 (CtBu), 67.9 (CHtBu), 121.5 (CHIm‑4/5),
124.4 (CHPy), 125.6 (CHAr), 125.8 (CHAr), 126.1 (CHAr), 126.7
(CHAr), 128.5 (CHAr), 128.8 (CHAr), 129.7 (CHAr), 131.8 (Cq), 134.6
(Cq), 134.8 (Cq), 135.4 (Cq), 137.9 (CHPy), 152.3 (NCN), 153.0
(CHPy), 153.7 (CHPy) ppm; ESI-MS m/z (%) 565.3 [M − 2I − 2H −
PyCl]+; FT-IR (ATR) 3050, 2965, 2924, 2872, 1663, 1593, 1510,
1475, 1437, 1397, 1368, 1317, 1263, 1233, 1117, 1049, 950, 912, 870,
778, 745, 691, 645, 625 cm−1. Anal. Calcd for C38H40ClI2N3Pd·
0.4CH2Cl2: C, 47.63; H, 4.25; N, 4.34. Found: C, 47.73; H, 4.03; N,
4.38.
■
ACKNOWLEDGMENTS
■
We thank the Swiss National Science Foundation and the
University of Geneva for financial support, Stephane Rosset and
Prof. Alexandre Alexakis (Geneva) for the use of their
supercritical fluid chromatography (SFC) equipment, and
Prof. Luigi Cavallo (Salerno and KAUST) for advice on the
calculation of %Vbur.
REFERENCES
■
(1) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.;
Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
(2) Baudoin, O. Eur. J. Org. Chem. 2005, 4223.
(S,S)-14. The general procedure was applied starting from PdCl2
(16 mg, 0.091 mmol), the α-naphthyl-saturated dihydroimidazolium
salt (59 mg, 0.1 mmol), K2CO3 (70 mg, 0.5 mmol), and 3-
chloropyridine (∼0.5 mL). For the anion exchange NaI (∼70 mg, 0.45
mmol) was used and the product was obtained as an orange solid (66
(3) For asymmetric Suzuki−Miyaura coupling reactions involving
chiral phosphines, see: (a) Cammidge, A. N.; Crepy, K. V. Tetrahedron
́
2004, 60, 4377. (b) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000,
122, 12051. (c) Jensen, J. F.; Johannsen, M. Org. Lett. 2003, 5, 3025.
(d) Mikami, K.; Miymoto, T.; Hatano, M. Chem. Commun. 2004,
2082. (e) Genov, M. G.; Almorin, A.; Espinet, P. Chem. Eur. J. 2006,
12, 9346. (f) Tang, W.; Patel, N. D.; Xu, G.; Xu, X.; Savoie, J.; Ma, S.;
Hao, M.; Keshipeddy, S.; Capacci, A. G.; Wei, X.; Zhang, Y.; Gao, J. J.;
Li, W.; Rodriguez, S.; Lu, B. Z.; Yee, N. K.; Senanayake, C. H. Org.
Lett. 2012, 14, 2258.
mg, 75%). Yellow crystals were obtained by slow diffusion of n-
20
pentane into a concentrated solution in dichloromethane: [α]D
=
−159.5° (c = 6.1 mg/mL, CH2Cl2); mp >250 °C dec; 1H NMR
(CD2Cl2, 400 MHz) δ 1.15 (s, 18H, CH3 tBu), 4.42 (ddd, JHH = 3 Hz,
JHH = 8 Hz, JHH = 12 Hz, 4H, CH2 Im‑4/5), 6.84 (s, 2H, CHtBu), 6.92
(dd, JHH = 8 Hz, 1H, CHPy), 7.31 (ddd, JHH = 1 Hz, JHH = 7 Hz, JHH
8 Hz, 2H, CHAr), 7.42−7.65 (m, 8H, 6 CHAr + 2 CHPy), 7.80 (d, JHH
=
=
(4) For asymmetric Suzuki−Miyaura coupling using supported chiral
phosphines, see: (a) Sawai, K.; Tatumi, R.; Nakahodo, T.; Fujihara, H.
Angew. Chem., Int. Ed. 2008, 47, 6917. (b) Uozumi, Y.; Matsuura, Y.;
Arakawa, T.; Yamada, Y. M. A. Angew. Chem., Int. Ed. 2009, 48, 2708.
(c) Yamamoto, T.; Akai, Y.; Nagata, Y.; Suginome, M. Angew. Chem.,
Int. Ed. 2011, 50, 8844.
2 Hz, 1H, CHPy), 7.88 (d, JHH = 8 Hz, 2H, CHAr), 7.94 (d, JHH = 8 Hz,
2H, CHAr), 8.69 (d, JHH = 8 Hz, 2H, CHAr) ppm; 13C{1H} NMR
(CD2Cl2, 101 MHz) δ 29.3 (CH3 tBu), 36.9 (CtBu), 50.4 (CH2 Im‑4/5),
65.4 (CHtBu), 123.9 CHPy), 125.4 (CHAr), 125.5 (CHAr), 126.3
(CHAr), 126.5 (CHAr), 127.4 (CHAr), 128.5 (CHAr), 129.5 (CHAr),
131.4 (Cq), 134.6 (Cq), 134.9 (Cq), 137.6 (CHPy), 137.8 (Cq), 153.6
(CHPy), 154.1 (CHPy), 187.9 (NCN) ppm; ESI-MS m/z (%) 567.5 [M
− 2I − 2H − PyCl]+; FT-IR (ATR) 2955, 2924, 2872, 1722, 1663,
1593, 1563, 1510, 1475, 1437, 1397, 1368, 1317, 1263, 1233, 1117,
1049, 950, 912, 870, 778, 745, 691, 645, 625 cm−1. Anal. Calcd for
C32H42ClI2N3Pd: C, 48.74; H, 4.52; N, 4.49. Found: C, 48.40; H, 4.35;
N, 4.31.
́
(5) (a) Bermejo, A.; Ros, A.; Fernandez, R.; Lassaletta, J. M. J. Am.
Chem. Soc. 2008, 130, 15798. (b) Ros, A.; Estepa, B.; Bermejo, A.;
Eleuterio, A.; Ferna, R.; Lassaletta, J. M. J. Org. Chem. 2012, 77, 4740.
(6) Zhang, S.-S.; Wang, Z.-Q.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2010,
12, 5546.
(7) Grach, G.; Dinut, A.; Terrasson, V.; Medimagh, R.; Bridoux, A.;
Razafimahaleo, V.; Gaucher, A.; Marque, S.; Prim, D.; Gil, R.; Planas,
G.; Vi, C.; Thomas, I.; Roblin, J.; Troin, Y. Organometallics 2011, 30,
4074.
(8) For asymmetric Suzuki−Miyaura coupling with chiral Pd−NHC
complexes, see: (a) Debono, N.; Labande, A.; Manoury, E.; Daran, J.-
C.; Poli, R. Organometallics 2010, 29, 1879. (b) Shigeng, G.; Tang, J.;
Zhang, D.; Wang, Q.; Chen, Z.; Weng, L. J. Organomet. Chem. 2012,
700, 223. (c) Yang, L.; Guan, P.; He, P.; Chen, Q.; Cao, C.; Peng, Y.;
Shi, Z.; Pang, G.; Shi, Y. Dalton Trans. 2012, 41, 5020.
General Procedure for Asymmetric Suzuki−Miyaura Cou-
pling with the Chiral PEPPSI Complex 13. A Radley carousel
reactor tube was charged with the chiral PEPPSI complex 13 (0.005
mmol, 5 mol %), aryl halide (0.1 mmol), boronic acid (0.15 mmol),
and KOH (3 equiv, 0.3 mmol). After three evacuation/N2 fill cycles,
1,4-dioxane (1 mL) and water (1 mL) were added using a syringe and
the solution was stirred for 24 h at the temperature indicated. Then
water was added to the reaction mixture (1 mL) and the biphasic
solution was extracted with Et2O (3 × 2 mL). The organic layers were
dried over Na2SO4 and filtered on cotton. Finally, the volatiles were
removed under vacuum at room temperature. Depending on the final
product, the residue obtained was purified by column chromatography
on SiO2 using pentane as eluent with different proportions of Et2O
(9) (a) Kundig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernardinelli, G.
̈
Angew. Chem., Int. Ed. 2007, 46, 8484. (b) Jia, Y.-X.; Hillgren, J. M.;
Watson, E. L.; Marsden, S. P.; Kundig, E. P. Chem. Commun. 2008,
̈
4040. (c) Jia, Y.-X.; Katayev, D.; Bernardinelli, G.; Seidel, T. M.;
Kundig, E. P. Chem. Eur. J. 2010, 16, 6300. (d) Katayev, D.; Kundig, E.
̈
̈
265
dx.doi.org/10.1021/om4009982 | Organometallics 2014, 33, 260−266