10392 Nucleic Acids Research, 2017, Vol. 45, No. 18
green-to-red photoconversion of a fluorescent protein. Proc. Natl.
Acad. Sci. U.S.A., 99, 12651–12656.
55. Huang,X.X., Zhu,L.N., Wu,B., Huo,Y.F., Duan,N.N. and
Kong,D.M. (2014) Two cationic porphyrin isomers showing different
multimeric G-quadruplex recognition specificity against monomeric
G-quadruplexes. Nucleic Acids Res., 42, 8719–8731.
56. Yang,P., De Cian,A., Teulade- Fichou,M.P., Mergny,J.L. and
Monchaud,D. (2009) Engineering bisquinolinium/thiazole orange
conjugates for fluorescent sensing of G-quadruplex DNA. Angew.
Chem. Int. Ed., 48, 2188–2191.
57. Kong,D.M., Ma,Y.E., Wu,J. and Shen,H.X. (2009) Discrimination of
G-quadruplexes from duplex and single-stranded DNAs with
fluorescence and energy-transfer fluorescence spectra of crystal violet.
Chem. Eur. J., 15, 901–909.
58. Kreig,A., Calvert,J., Sanoica,J., Cullum,E., Tipanna,R. and Myong,S.
(2015) G-quadruplex formation in double strand DNA probed by
NMM and CV fluorescence. Nucleic Acids Res., 43, 7961–7970.
59. Li,T., Wang,E.K. and Dong,S.J. (2009) Potassium-lead-switched
G-quadruplexes: a new class of DNA logic gates. J. Am. Chem. Soc.,
131, 15082–15083.
36. Shkrob,M.A., Yanushevich,Y.G., Chudakov,D.M., Gurskaya,N.G.,
Labas,Y.A., Poponov,S.Y., Mudrik,N.N., Lukyanov,S. and
Lukyanov,K.A. (2005) Far-red fluorescent proteins evolved from a
blue chromoprotein from Actinia equina. Biochem. J, 392, 649–654.
37. Shcherbo,D., Shemiakina,I.I., Ryabova,A.V., Luker,K.E.,
Schmidt,B.T., Souslova,E.A., Gorodnicheva,T.V., Strukova,L.,
Shidlovskiy,K.M., Britanova,O.V. et al. (2010) Near-infrared
fluorescent proteins. Nat. Methods, 7, 827–829.
38. Lin,W.Y., Yuan,L., Cao,Z.M., Feng,Y.M. and Song,J.Z. (2010)
Through-bond energy transfer cassettes with minimal spectral
overlap between the donor emission and acceptor absorption:
coumarinth minimal spectral overlap between-Stokes shifts and
emission shifts. Angew. Chem. Int. Ed., 49, 375–379.
39. Faraji,S. and Krylov,A.I. (2015) On the nature of an extended Stokes
shift in the mPlum fluorescent protein. J. Phys. Chem. B, 119,
13052–13062.
40. Han,K.Y., Leslie,B.J., Fei,J., Zhang,J. and Ha,T. (2013)
Understanding the photophysics of the spinach–DFHBI RNA
aptamer–fluorogen complex to improve live-cell RNA imaging. J.
Am. Chem. Soc., 135, 19033–19038.
41. Wang,P., Querard,J., Maurin,S., Nath,S.S., Le Saux,T., Gautier,A.
and Jullien,L. (2013) Photochemical properties of Spinach and its use
in selective imaging. Chem. Sci., 4, 2865–2873.
42. Kim,H.M. and Cho,B.R. (2009) Two-photon probes for intracellular
free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc.
Chem. Res., 42, 863–872.
43. Drobizhev,M., Makarov,N.S., Tillo,S.E., Hughes,T.E. and Rebane,A.
(2011) Two-photon absorption properties of fluorescent proteins.
Nat. Methods, 8, 393–399.
44. Balasubramanian,S., Hurley,L.H. and Neidle,S. (2011) Targeting
G-quadruplexes in gene promoters: a novel anticancer strategy? Nat.
Rev. Drug. Discov., 10, 261–275.
45. Neidle,S. (2016) Quadruplex nucleic acids as novel therapeutic
targets. J. Med. Chem., 59, 5987–6011.
46. Wang,S.-R., Min,Y.-Q., Wang,J.-Q., Liu,C.-X., Fu,B.-S., Wu,F.,
Wu,L.-Y., Qiao,Z.-X., Song,Y.-Y. and Xu,G.-H. (2016) A highly
conserved G-rich consensus sequence in hepatitis C virus core gene
represents a new anti–hepatitis C target. Sci. Adv., 2, e1501535.
47. Jin,B., Zhang,X., Zheng,W., Liu,X., Qi,C., Wang,F. and
Shangguan,D. (2013) Fluorescence light-up probe for parallel
G-quadruplexes. Anal. Chem., 86, 943–952.
48. Alexander,H., Wu,Y., Huang,Y.C., Chavez,E.A., Jesse,P., Brad,J.F.,
Jr,B.R.M., Dipankar,S. and Lansdorp,P.M. (2014) Detection of
G-quadruplex DNA in mammalian cells. Nucleic Acids Res., 42,
860–869.
60. Martin,M.E., Negri,F. and Olivucci,M. (2004) Origin, nature, and
fate of the fluorescent state of the green fluorescent protein
chromophore at the CASPT2//CASSCF resolution. J. Am. Chem.
Soc., 126, 5452–5464.
61. Kuryavyi,V., Cahoon,L.A., Seifert,H.S. and Patel,D.J. (2012) The
RecA-binding pilE G4 sequence essential for Pilin antigenic variation
forms parallel-stranded monomeric and 5ꢁ-end stacked dimeric
G-quadruplexes. Structure, 20, 2090–2102.
62. Ali,A., Bansal,M. and Bhattacharya,S. (2014) Ligand 5, 10, 15,
20-tetra (N-methyl-4-pyridyl) porphine (TMPyP4) prefers the parallel
propeller-type human telomeric G-Quadruplex DNA over its other
polymorphs. J. Phys. Chem. B, 119, 5–14.
63. Luu,K.N., Phan,A.T., Kuryavyi,V., Lacroix,L. and Patel,D.J. (2006)
Structure of the human telomere in K+ solution: an intramolecular (3
+ 1) G-quadruplex scaffold. J. Am. Chem. Soc., 128, 9963–9970.
64. Lietard,J., Assi,H.A., Go´mezpinto,I., Gonza´lez,C., Somoza,M.M.
and Damha,M.J. (2017) Mapping the affinity landscape of
Thrombin-binding aptamers on 2ꢁF-ANA/DNA chimeric
G-Quadruplex microarrays. Nucleic Acids Res.,45, 1619–1632.
65. Liu,J.W., Cao,Z.H. and Lu,Y. (2009) Functional nucleic acid sensors.
Chem. Rev., 109, 1948–1998.
66. Tan,W.H., Donovan,M.J. and Jiang,J.H. (2013) Aptamers from
cell-based selection for bioanalytical applications. Chem. Rev., 113,
2842–2862.
67. Zhang,N., Bing,T., Shen,L., Song,R., Wang,L., Liu,X., Liu,M., Li,J.,
Tan,W. and Shangguan,D. (2016) Intercellular connections related to
cell–cell crosstalk specifically recognized by an aptamer. Angew.
Chem. Int. Ed., 55, 3914–3918.
68. Shangguan,D.H., Li,Y., Tang,Z.W., Cao,Z.C., Chen,H.W.,
Mallikaratchy,P., Sefah,K., Yang,C.J. and Tan,W.H. (2006) Aptamers
evolved from live cells as effective molecular probes for cancer study.
Proc. Natl. Acad. Sci. U.S.A., 103, 11838–11843.
49. Bhasikuttan,A.C. and Mohanty,J. (2015) Targeting G-quadruplex
structures with extrinsic fluorogenic dyes: promising fluorescence
sensors. Chem. Commun., 51, 7581–7597.
50. Xu,S.J., Li,Q., Xiang,J.F., Yang,Q.F., Sun,H.X., Guan,A.J.,
Wang,L.X., Liu,Y., Yu,L.J. and Shi,Y.H. (2015) Directly lighting up
RNA G-quadruplexes from test tubes to living human cells. Nucleic
Acids Res., 43, 9575–9586.
51. Chen,S.-B., Hu,M.-H., Liu,G.-C., Wang,J., Ou,T.-M., Gu,L.-Q.,
Huang,Z.-S. and Tan,J.-H. (2016) Visualization of NRAS RNA
G-quadruplex structures in cells with an engineered fluorogenic
hybridization probe. J. Am. Chem. Soc., 138, 10382–10385.
52. Collie,G.W. and Parkinson,G.N. (2011) The application of DNA and
RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev., 40,
5867–5892.
69. Shi,H., He,X.X., Wang,K.M., Wu,X., Ye,X.S., Guo,Q.P., Tan,W.H.,
Qing,Z.H., Yang,X.H. and Zhou,B. (2011) Activatable aptamer
probe for contrast-enhanced in vivo cancer imaging based on cell
membrane protein-triggered conformation alteration. Proc. Natl.
Acad. Sci. U.S.A., 108, 3900–3905.
70. You,M., Peng,L., Shao,N., Zhang,L., Qiu,L., Cui,C. and Tan,W.
(2014) DNA “nano-claw”: logic-based autonomous cancer targeting
and therapy. J. Am. Chem. Soc., 136, 1256–1259.
71. You,M., Zhu,G., Chen,T., Donovan,M.J. and Tan,W. (2015)
Programmable and multiparameter DNA-based logic platform for
cancer recognition and targeted therapy. J. Am. Chem. Soc., 137,
667–674.
72. Ueki,R. and Sando,S. (2014) A DNA aptamer to c-Met inhibits
cancer cell migration. Chem. Commun., 50, 13131–13134.
73. Pu,Y., Liu,Z.X., Lu,Y., Yuan,P., Liu,J., Yu,B., Wang,G.D., Yang,C.J.,
Liu,H. and Tan,W.H. (2015) Using DNA aptamer probe for
immunostaining of cancer frozen tissues. Anal. Chem., 87, 1919–1924.
53. Zhou,W.H., Saran,R. and Liu,J.W. (2017) Metal Sensing by DNA.
Chem. Rev., 117, 8272−8325.
54. Zhu,L.N., Wu,B. and Kong,D.M. (2013) Specific recognition and
stabilization of monomeric and multimeric G-quadruplexes by
cationic porphyrin TMPipEOPP under molecular crowding
conditions. Nucleic Acids Res., 41, 4324–4335.