Journal of the American Chemical Society
Page 8 of 9
at serine. Angew. Chem., Int., Ed. 2015, 54, 12716–12721. (f) Dery, S.;
N,N-acetal center. J. Am. Chem. Soc. 1989, 111, 2622–2632. (b) Leon-
ard, D. J.; Ward, J. W.; Clayden, J. Asymmetric α-arylation of amino
acids. Nature 2018, 562, 105–109.
(16) Jeanguenat, A.; Seebach, D. Stereoselective chain elongation at
C-3 of cysteine through 2,3-dihydrothiazoles, without racemization.
preparation of 2-amino-5-hydroxy-3- mercaptoalkanoic acid deriva-
tives. J. Chem. Soc. Perkin Trans. 1 1991, 2291–2298.
Reddy, P. S.; Dery, L.; Mousa, R.; Dardashti, R. N.; Metanis, N. In-
sights into the deselenization of selenocysteine into alanine and serine.
Chem. Sci. 2015, 6, 6207–6212.
(7) Wu, C.; Leroux, J.-C.; Gauthier, M. A. Twin disulfides for orthog-
onal disulfide pairing and the directed folding of multicyclic peptides.
Nat. Chem. 2012, 4, 1044–1049.
1
2
3
4
5
6
7
8
(8) Hruby, V. J. Design in topographical space of peptide and pep-
tidomimetic ligands that affect behavior. a chemist’s glimpse at the
mind-body problem. Acc. Chem. Res. 2001, 34, 389–397.
(17) For selected references, see: (a) Zuo, Z.; Cong, H.; Li, W.; Choi,
J.; Fu, G. C.; MacMillan, D. W. C. Enantioselective decarboxylative
arylation of α‑amino acids via the merger of photoredox and nickel
catalysis J. Am. Chem. Soc. 2016, 138, 1832−1835. (b) McCarver, S.
J.; Qiao, J. X.; Carpenter, J.; Borzilleri, R. M.; Poss, M. A.; Eastgate,
M. D.; Miller, M.; MacMillan, D. W. C. Decarboxylative peptide mac-
rocyclization through photoredox catalysis. Angew. Chem., Int. Ed.
2017, 56, 728 –732. (c) Bloom, S.; Liu, C.; Kꢁlmel, D. K.; Qiao, J. X.;
Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Decar-
boxylative alkylation for site-selective bioconjugation of native pro-
teins via oxidation potentials. Nat. Chem. 2018, 10, 205–211.
(18) For selected examples, see: (a) Ni, S.; Garrido-Castro, A. F.; Mer-
chant, R. R.; deGruyter, J. N.; Schmitt, D. C.; Mousseau, J. J.; Gallego,
G. M.; Yang, S.; Collins, M. R.; Qiao, J. X.; Yeung, K.; Langley, D. R.;
Poss, M. A.; Scola, P. M.; Qin, T.; Baran, P. S. A general amino acid
synthesis enabled by innate radical cross-coupling. Angew. Chem., Int.
Ed. 2018, 57, 14560–14565. (b) Pratsch, G.; Lackner, G. L.; Overman,
L. E. Constructing quaternary carbons from N-(acyloxy)phthalimide
precursors of tertiary radicals using visible-light photocatalysis. J. Org.
Chem. 2015, 80, 6025–6036.
(19) Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. Elec-
tron-transfer photoredox catalysis: development of a tin-free reductive
dehalogenation reaction. J. Am. Chem. Soc. 2009, 131, 8756–8757.
(20) Gracia-Vitoria, J.; Osante, I.; Cativiela, C.; Merino, P.; Tejero, T.
Self-regeneration of chirality with L‑cysteine through 1,3-dipolar cy-
cloadditions between diazoalkanes and enantiomerically pure thia-
zolines: experimental and computational studies. J. Org. Chem. 2018,
83, 3960−3972.
(21) Schwarz, J.; König, B. Metal-free, visible-light-mediated, decar-
boxylative alkylation of biomass-derived compounds. Green Chem.
2016, 18, 4743–4749.
(22) (a) Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. A synthetic molecular
system capable of mirror-image genetic replication and transcription.
Nat. Chem. 2016, 8, 698–704. (b) Teng, P.; Ma, N.; Cerrato, D. C.; She,
F.; Odom, T.; Wang, X.; Ming, L.-J.; van der Vaart, A.; Wojtas, L.; Xu,
H.; Cai, J. Right-handed helical foldamers o-AApeptides. J. Am. Chem.
Soc. 2017, 139, 7363–7369.
(23) Mitchell, N. J.; Malins, L. R.; Liu, X.; Thompson, R. E.; Chan,
B.; Radom, L.; Payne, R. J. Rapid additive-free selenocystine–se-
lenoester peptide ligation. J. Am. Chem. Soc. 2015, 137, 14011–14014.
(24) For applications of peptide ligation-desulfurization/deseleni-za-
tion reactions, see selected reviews: (a) Ma, J.; Zeng, J.; Wan, Q. Post-
ligation-desulfurization: a general approach for chemical protein syn-
thesis. Top. Curr. Chem. 2015, 363, 57–102. (b) Kulkarni, S. S.; Sayers,
J.; Premdjee, B.; Payne, R. J. Rapid and efficient protein synthesis
through expansion of the native chemical ligation concept. Nature Rev.
Chem. 2018, 2, 1–17.
(25) (a) Berger, A. A.; Vꢁller, J.; Budisa, N.; Koksch, B. Deciphering
the fluorine code-the many hats fluorine wears in a protein environment.
Acc. Chem. Res. 2017, 50, 2093−2103. (b) Moschner, J.; Stulberg, V.;
Fernandes, R.; Huhmann, S.; Leppkes, J.; Koksch, B. Approaches to
obtaining fluorinated α-amino acids. Chem. Rev. 2019, 119,
10718−10801.
(26) Wikstrom, M. K. Proton pump coupled to cytochrome c oxidase
in mitochondria. Nature 1977, 266, 271−273.
(27) Wang, Y.; Chou, D. H.-C. A thiol–ene coupling approach to na-
tive peptide stapling and macrocyclization. Angew. Chem., Int. Ed.
2015, 54, 10931–10934.
(28) de Araujo, A. D.; Mobli, M.; Castro, J.; Harrington, A. M.; Vetter,
I., Dekan, Z.; Muttenthaler, M.; Wan, J.; Lewis, R. J.; King, G. F.; Bri-
erley, S. M.; Alewood, P. F. Selenoether oxytocin analogues have an-
algesic properties in a mouse model of chronic abdominal pain. Nat.
Commun. 2014, 5, 1−12.
(9) (a) Noisier, A. F. M.; Albericio, F. Advance in ligation techniques
for peptide and protein synthesis. Amino Acids, Pept. Proteins 2014, 39,
1–20. (b) Moyal, T.; Hemantha, H. P.; Siman, P.; Refuaa, M.; Brik, A.
Highly efficient one-pot ligation and desulfurization. Chem. Sci. 2013,
4, 2496–2501. (c) Reimann, O.; Smet-Nocca, C.; Hackenberger, C. P.
R. Traceless purification and desulfurization of tau protein ligation
products. Angew. Chem., Int. Ed. 2015, 54, 306−310. (d) Tang, S.;
Liang, L.-J.; Si, Y.-Y. Gao, S.; Wang, J.-X.; Liang, J.; Mei, Z.; Zheng,
J.-S.; Liu, L. Practical chemical synthesis of atypical ubiquitin chains
by using an isopeptide-linked Ub isomer. Angew. Chem., Int. Ed. 2017,
56, 13333 –13337. (e) Chow, H. Y.; Zhang, Y.; Matheson, E.; Li, X.
Ligation technologies for the synthesis of cyclic peptides. Chem. Rev.
2019, 119, 9971−10001. (f) Wang, S.; Thopate, Y. A.; Zhou, Q.; Wang,
P. Chemical protein synthesis by native chemical ligation and varia-
tions thereof. Chin. J. Chem. 2019, 37, 1181−1193.
(10) (a) Chen, S.; Gopalakrishnan, R.; Schaer, T.; Marger, F.; Hovius,
R.; Bertrand, D.; Pojer, F.; Heinis, C. Dithiol amino acids can structur-
ally shape and enhance the ligand-binding properties of polypeptides.
Nat. Chem. 2014, 6, 1009–1016. (b) Murar, C. E.; Ninomiya, M.; Shi-
mura, S.; Karakus, U.; Boyman, O.; Bode, J. W. Chemical synthesis of
interleukin-2 and disulfide stabilizing analogues. Angew. Chem., Int.
Ed. 2020, 59, 8425–8429.
(11) (a) Guerin, D. J.; Miller, S. J. Asymmetric azidation-cycloaddi-
tion with open-chain peptide-based catalysts. A sequential enantiose-
lective route to triazoles. J. Am. Chem. Soc. 2002, 124, 2134−2136. (b)
Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Light-
driven deracemization enabled by excited-state electron transfer. Sci-
ence, 2019, 366, 364–369.
(12) For selected references, see: (a) Gracia-Vitoria, J.; Osante, I.;
Cativiela, C. Stereoselective synthesis of modified cysteines. Tetrahe-
dron: Asymmetry 2017, 28, 215–245. (b) Shang, S.; Tan, Z.; Dong, S.;
Danishefsky, S. J. An advance in proline ligation. J. Am. Chem. Soc.
2011, 133, 10784−10786. (c) Townsend, S. D.; Tan, Z.; Dong, S.;
Shang, S.; Brailsford, J. A.; Danishefsky, S. J. Advances in proline li-
gation. J. Am. Chem. Soc. 2012, 134, 3912−3916. (d) Wong, C. T. T.;
Tung, C. L.; Li, X. Synthetic cysteine surrogates used in native chemi-
cal ligation. Mol. Biosyst. 2013, 9, 826−833. (e) Kulkarni, S. S.; Sayers,
J.; Premdjee, B.; Payne, R. J. Rapid and efficient protein synthesis
through expansion of the native chemical ligation concept. Nature Rev.
Chem. 2018, 2, 1–17.
(13) An elegant enolate chemistry has been used to build thiol/selenol
residues in 3-5 steps, but this method is limited to Asp, Asn, Glu scaf-
folds. For selected reviews and references, see: (a) Thompson, R. E.;
Chan, B.; Radom, L.; Jolliffe, K. A.; Payne, R. J. Chemoselective liga-
tion-desulfurization at aspartate. Angew. Chem., Int. Ed. 2013, 52,
9723–9727. (b) Mitchell, N. J.; Sayers, J.; Kulkarni, S. S.; Clayton, D.;
Goldys, A. M.; Ripoll-Rozada, J.; Pereira, P. J. B.; Chan, B.; Radom,
L.; Payne, R. J. Accelerated protein synthesis via one-pot ligation-de-
selenization chemistry. Chem 2017, 2, 703–715.
(14) For selected references on Giese reaction, see: (a) Giese, B.;
Dupuis, J. Diastereoselective syntheses of C‐glycopyranosides. Angew.
Chem., Int. Ed. Engl. 1983, 22, 622–623. (b) Giese, B. Formation of
CC bonds by addition of free radicals to alkenes. Angew.Chem., Int. Ed.
Engl. 1983, 22, 753–764. (c) Jasperse, C. P.; Curran, D. P.; Fevig, T. L.
Radical reactions in natural product synthesis. Chem. Rev. 1991, 91,
1237–1286. (d) Srikanth, G. S. C.; Castle, S. L. Advances in radical
conjugate additions. Tetrahedron 2005, 61, 10377–10441.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) (a) Poltf, R.; Seebach, D. Stereoselective alkylation of glycine
units in dipeptide derivatives: “chirality transfer” via a pivalaldehyde
ACS Paragon Plus Environment