Table 2 Same batch of (poly)cat-1 as a catalyst for promoting
different asymmetric reactions
The CNRS, the Ministe
`
re de l’Enseignement Supe
´
rieur et de
la Recherche and the program ‘‘Chimie et De
´
veloppement
a
b
c
Durables’’ du CNRS are acknowledged for financial support.
Entry
Products
Yield (%)
ee (%)
1
2
3
4
5
6
7
8
9
st run
nd run
rd run
8
2
4
6
8
2
4
6
2
20
93
86
85
9
66
94
79
64
24
63
51
3
Notes and references
1 Asymmetric Catalysis on Industrial Scale: Challenges, Approaches
and Solutions, ed. H. U. Blaser and E. Schmidt, Wiley VCH,
Weinheim, Germany, 2004.
2 M. Berthod, G. Mignani, G. Woodward and M. Lemaire,
Chem. Rev., 2005, 105, 1801.
3 D. Rechavi and M. Lemaire, Chem. Rev., 2002, 102, 3467;
d
th run
th run
th run
th run
th run
th run
6
65
29
3
d
64
J. M. Fraile, J. I. Garcı
008, 252, 624; J. M. Fraile, J. I. Garcı
J. A. Mayoral, E. Pires and L. Salvatella, Catal. Today, 2009,
40, 44.
4 C. Baleiza
5 W. Solodenko, G. Jas, U. Kunz and A. Kirschning, Synthesis,
007, 583.
S. E. Schaus, J. F. Larrow and E. N. Jacobsen, J. Org. Chem.,
997, 62, 4197; J. M. Fraile, J. I. Garcıa, C. I. Herrerıas,
´
a and J. A. Mayoral, Coord. Chem. Rev.,
2
´
a, C. I. Herrerıas,
´
a
10 mol% of catalyst compared to benzaldehyde was initially
introduced. The reactions were performed at room temperature for
1
b
3 h. Isolated yield. Enantiomeric excesses were determined by
c
2
˜
o and H. Garcia, Chem. Rev., 2006, 106, 3987.
d
chiral GC or HPLC analyses (see the ESI).w Reaction time = 72 h.
2
6
again the results are totally similar to those reported in
Table 1, entry 4. Finally, the last transformation, the nucleo-
philic opening of cyclohexene oxide (5), was performed in the
next run leading to the same activity and enantioselectivity as
those described before (Table 2, 4th run and Table 1, entry 6).
The exceptional stability of (poly)cat-1 under different reaction
conditions was fully proven by involving the same batch again
in four new runs (Table 2, 5th–8th runs) with the same
successive series of transformations.
1
´
´
J. A. Mayoral, O. Reiser and M. Vaultier, Tetrahedron Lett.,
2004, 45, 6765; S. Zeror, J. Collin, J.-C. Fiaud and L. Aribi
Zouioueche, J. Mol. Catal. A: Chem., 2006, 256, 85; H. Werner,
C. I. Herrerıas, M. Glos, A. Gissibl, J. M. Fraile, I. Perez,
´ ´
J. A. Mayoral and O. Reiser, Adv. Synth. Catal., 2006, 348, 125;
M. Bandini, M. Benaglia, R. Sinisi, S. Tommasi and A. Umani-
Ronchi, Org. Lett., 2007, 9, 2151.
7
G. Chollet, F. Rodriguez and E. Schulz, Org. Lett., 2006, 8, 539;
G. Chollet, M.-G. Guillerez and E. Schulz, Chem.–Eur. J., 2007,
1
3, 992.
Each run is comparable to the one from the preceding
sequence, except for the nitroaldol reaction which led to less
reproducible results in terms of enantioselectivity. The last use
of the catalyst batch, initially introduced in a 10 mol%
quantity, the 8th reuse of the polymer, was a hetero-Diels–
Alder reaction, delivering compound 8 with the expected 64%
ee in a satisfying yield. After each transformation, the
recovered crude mixtures were examined by NMR spectro-
scopy, giving spectra in all points identical to those that arose
from using new catalyst batches and the expected compounds
were isolated in their pure form.
8 A. Zulauf, M. Mellah, R. Guillot and E. Schulz, Eur. J. Org.
Chem., 2008, 2118.
9
A. Zulauf, M. Mellah and E. Schulz, J. Org. Chem., 2009, 74, 2242.
0 J. M. Fraile, I. Perez, J. A. Mayoral and O. Reiser, Adv. Synth.
Catal., 2006, 348, 1680.
11 P. G. Cozzi, Chem. Soc. Rev., 2004, 33, 410.
1
´
1
1
1
2 M. Bandini, P. G. Cozzi and A. Umani-Ronchi, Chem. Commun.,
002, 919.
3 A. Voituriez, M. Mellah and E. Schulz, Synth. Met., 2006, 156,
2
166.
4 S. E. Schaus, J. Brana
˚
lt and E. N. Jacobsen, J. Org. Chem., 1998,
6
3, 403.
1
1
5 K. Aikawa, R. Irie and T. Katsuki, Tetrahedron, 2001, 57, 845.
6 W. Cha"adaj, P. Kwiatkowski and J. Jurczak, Tetrahedron Lett.,
2008, 49, 6810.
As far as we know, this recycling procedure is the first
example for which the same catalyst batch is involved in
multi-reaction procedures to synthesize enantioenriched
compounds. Although the selectivities are not high, they
exactly match those obtained under classical heterogeneous
catalysis. The reproducibility of these results is clear proof of
the high stability and versatility of our electrogenerated chiral
1
7 R. Kowalczyk, Ł. Sidorowicz and J. Skar z˙ ewski, Tetrahedron:
Asymmetry, 2007, 18, 2581; R. Kowalczyk, P. Kwiatkowski,
J. Skar z˙ ewski and J. Jurczak, J. Org. Chem., 2009, 74, 753.
18 L. E. Martınez, J. L. Leighton, D. H. Carsten and E. N. Jacobsen,
´
J. Am. Chem. Soc., 1995, 117, 5897.
1
9 K. B. Hansen, J. L. Leighton and E. N. Jacobsen, J. Am. Chem.
Soc., 1996, 118, 10924; E. N. Jacobsen, Acc. Chem. Res., 2000, 33,
421.
20 P. G. Cozzi and P. Kotrusz, J. Am. Chem. Soc., 2006, 128, 4940.
(
poly)salen-thiophene chromium complex.
6
576 | Chem. Commun., 2009, 6574–6576
This journal is ꢀc The Royal Society of Chemistry 2009