LIN ET AL.
9 of 10
Mousseau, G. Pelletier, A. B. Charette, Chem. Rev. 2012, 112,
2642.
4 | CONCLUSIONS
[2] Some reviews for C–H functionality of pyridines: a) Y. Nakao,
Synthesis 2011, 20, 3209; b) D. A. Colby, A. S. Tsai, R. G.
Bergman, J. A. Ellman, Accounts Chem. Res. 2012, 45, 814;
c) H. Tsurugi, K. Yamamoto, H. Nagae, H. Kaneko, K.
Mashima, Dalton Trans. 2014, 43, 2331; d) D. E. Stephens,
O. V. Larionov, Tetrahedron 2015, 71, 8683; e) Z. Dong, Z.
Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117,
9333; f) H. Nagae, A. Kundu, M. Inoue, H. Tsurugi, K.
Mashima, Asian J. Org. Chem. 2018, 7, 1256.
In summary, we have demonstrated for the first time that
mono(phosphinoamido)-rare earth complexes, such as
NP1-Sc and NP2-Gd, can serve as efficient catalyst
precursors for ortho-C–H addition of pyridines with
nonpolar alkenes and polar imines with an excellent
regioselectivity and chemoselectivity. A broad range of
substrates were subjected to the current catalysis, directly
rendering the synthesis of a variety of ortho-alkylation
and ortho-aminoalkylated pyridine derivatives in moder-
ate to excellent yields and with a 100% atom-efficiency.
The behaviors of current catalyst are comparable
to those of half-sandwich rare earth catalyst along
with amido-rare earth catalyst reported previously. The
key to the success of mono(phosphinoamido)-rare earth
complexes may be attributed to its special η2-coordiantion
of N-P to rare earth site as well as its unique σ-amido-
rare earth bond. Further research on the catalytic
applications of the mono(phosphinoamido)-rare earth
complexes in other chemical transformations are now
in progress.
[3] Some examples for C–H functionalization of pyridines towards
unsaturated non-polar bonds by late-transition metal catalysts:
a) R. Grigg, V. Savic, Tetrahedron Lett. 1997, 38, 5737; b) J. C.
Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2007,
129, 5332; c) Y. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem.
Soc. 2008, 130, 2448; d) Y. Nakao, Y. Yamada, N. Kashihara, T.
Hiyama, J. Am. Chem. Soc. 2010, 132, 13666; e) C. C. Tsai,
W. C. Shih, C. H. Fang, C. Y. Li, T. G. Ong, G. P. Yap, J. Am.
Chem. Soc. 2010, 132, 11887; f) S. Yotphan, R. G. Bergman,
J. A. Ellman, Org. Lett. 2010, 12, 2978; g) M. Ye, G. L. Gao,
J. Q. Yu, J. Am. Chem. Soc. 2011, 133, 6964; h) J. Kwak, Y.
Ohk, Y. Jung, S. Chang, J. Am. Chem. Soc. 2012, 134, 17778;
i) T. Andou, Y. Saga, H. Komai, S. Matsunaga, M. Kanai, Am.
Ethnol. 2013, 125, 3295; j) D. G. Johnson, J. M. Lynam, N. S.
Mistry, J. M. Slattery, R. J. Thatcher, A. C. Whitwood, J. Am.
Chem. Soc. 2013, 135, 2222; k) S. Yamamoto, Y. Saga, T.
Andou, S. Matsunaga, M. Kanai, Adv. Synth. Catal. 2014, 356,
401; l) W. Lee, C. Chen, C. Liu, M. Yu, Y. Lin, T. Ong,
Commun. 2015, 51, 17104; m) Y. Li, G. Deng, X. Zeng, Organo-
metallics 2016, 35, 747; n) W. B. Zhang, X. T. Yang, J. B. Ma,
Z. M. Su, S. L. Shi, J. Am. Chem. Soc. 2019, 141, 5628.
ACKNOWLEDGMENT
This work was financially supported by the National
Natural Science Foundation of China (no. 21371131).
AUTHOR CONTRIBUTIONS
Hailong Lin: Data curation. Yongrui Li: Methodology.
Jinyu Wang: Investigation. Mei Zhang: Formal
analysis. Tao Jiang: Funding acquisition; supervision.
YanHui Chen: Funding acquisition; supervision.
[4] Two examples for C–H functionality of pyridines towards
polar multiple bonds by late-transition metal catalysts: a) E. J.
Moore, W. R. Pretzer, T. J. O'Connell, J. Harris, L. LaBounty,
L. Chou, S. S. Grimmer, J. Am. Chem. Soc. 1992, 114, 5888;
b) B. J. Li, Z. J. Shi, Chem. Sci. 2011, 2, 488.
[5] Some examples for ortho-functionalization of pyridines
towards olefins by zirconium catalysts: a) R. F. Jordan, D. F.
Taylor, J. Am. Chem. Soc. 1989, 111, 778; b) A. S. Guram, R. F.
Jordan, Organometallics 1991, 10, 3470; c) S. Rodewald, R. F.
Jordan, J. Am. Chem. Soc. 1994, 116, 4491; d) Q. Sun, P. Chen,
Y. Wang, Y. Luo, Y. Dan, Y. Yao, Inorg. Chem. 2018, 57, 11788.
[6] Some examples for ortho-functionalization of pyridines
towards olefins by rare-earth catalysts: a) B. Deelman, W.
Stevels, J. H. Teuben, M. Lakin, A. Spek, Organometallics
1994, 13, 3881; b) B. T. Guan, Z. Hou, J. Am. Chem. Soc. 2011,
133, 18086; c) G. Song, W. N. O. Wylie, Z. Hou, J. Am. Chem.
Soc. 2014, 136, 12209; d) G. Song, B. Wang, M. Nishiura, Z.
Hou, Chem. – Eur. J. 2015, 21, 8394; e) A. N. Selikhov, E. N.
Boronin, A. V. Cherkasov, G. K. Fukin, A. S. Shavyrin, A. A.
Trifonov, Adv. Synth. Catal. 2020, 362, 5432.
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are
available in the supporting information of this article.
ORCID
REFERENCES
[7] Some examples for C–H functionalization of arene ring of
2-arylpyridines with pyridine core acting as directed group:
a) A. S. Tsai, M. E. Tauchert, R. G. Bergman, J. A. Ellman,
J. Am. Chem. Soc. 2011, 133, 1248; b) Y. Li, B. Li, W. Wang, W.
Huang, X. Zhang, K. Chen, Z. Shi, Angew. Chem., Int. Ed.
2011, 50, 2115; c) K. Gao, N. Yoshikai, Chem. Commun. 2012,
48, 4305; d) T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai,
[1] Selected reviews: a) B. J. Holliday, C. A. Mirkin, Angew.
Chem., Int. Ed. 2001, 40, 2022; b) G. D. Henry, Tetrahedron
2004, 60, 6043; c) M. C. Bagley, C. Glover, E. A. Merritt, Synlett
2007, 16, 2459; d) J. P. Michael, Nat. Prod. Rep. 2007, 24, 223;
e) M. D. Hill, Chem. – Eur. J. 2010, 16, 12052; f) C. G. Arena,
G. Arico, Curr. Org. Chem. 2010, 14, 546; g) J. A. Bull, J. J.