10.1002/anie.201703919
Angewandte Chemie International Edition
COMMUNICATION
Consistent with our assumption, catalyst 8 gives 66% yield and
99% ee of (R)-aminoxylation product (5c, Ar=2-tolyl) as the
exclusive product; while catalyst 8´[X=N(Bu)4] gives a 64% yield
and 98% ee for enantio- and chemodivergent (S)-
hydroxyamination product (5c´, Ar=2-tolyl) as the exclusive
product (Figure 4b). Though chemodivergence has previously
been achieved for this reaction using the Hayashi/Jørgensen
catalyst (in the presence and absence of external acid
additive),16c,17b this is the first example where both enantio- and
chemodivergence is simultaneously achieved using a single
chiral catalyst.
Yamaguchi, S. Tanaka, K. Nagasawa, Org. Biomol. Chem. 2013, 11,
2780. (k) S. Mortezaei, N. R. Catarineu, X. Duan, C. Hu, J. W. Canary,
Chem. Sci. 2015, 6, 5904.
[3]
Science of Synthesis: Asymmetric Organocatalysis I & II; B. List, K.
Maruoka, Eds., Thieme: Stuttgart, Germany, 2012.
[4]
[5]
D. W. C. Macmillan, Nature, 2008, 455, 304.
S. Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am. Chem. Soc.
2003, 125, 2475.
[6]
[7]
D. G. Blackmond, A. Moran, M. Hughes, A. Armstrong, J. Am. Chem.
Soc. 2010, 132, 7598.
(a)
O
OH
O
O
+
10 mol% catalyst
RE
RE
H
RE
RE
4b
H
(a) J. E. Hein, A. Armstrong, D. G. Blackmond, Org. Lett. 2011, 13,
4300. (b) J. E. Hein, J. Burés, Y-H. Lam, M. Hughes, K. N. Houk, A.
Armstrong, D. G. Blackmond, Org. Lett. 2011, 13, 5644. (c) J. Burés, A.
Armstrong, D. G. Blackmond, Chem. Sci. 2012, 3, 1273.
CH2Cl2 , 0°C
RE = CO2Et
R
5b
1
catalyst = 8' [X = N(Bu)4], 40 min
catalyst = 8, 6h
82% yield
93% ee (S)
84% yield
82% ee (R)
[8]
[9]
A. K. Sharma, R. B. Sunoj, Chem. Comm. 2011, 47, 5759.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
(b)
Ar
OH
O
NH
O
O
O
O
N
10 mol% catalyst
or
Ar
+
N
H
CH2Cl2
Ar=2-tolyl
Ar
[10] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
1
4c
(R)-5c
(S)-5c'
[11] M. J. Frisch, et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2013.
catalyst = 8, 0°C, 30 min
5c:5c' > 99:1
66% yield
catalyst = 8' [X = N(Bu)4], -20°C, 3h
5c:5c' > 1:99
64% yield
[12] A similar strategy has been used in C. Palomo, S. Vera, I. Velilla, A.
Mielgo, E. Gomez-Bengoa, Angew. Chem. Int. Ed. 2006, 45, 5984;
Angew. Chem. 2006, 118, 6130.
99% ee [(R)-5c]
98% ee [(S)-5c']
Figure 4. Prototypical examples of an (a) enantiodivergent aldol reaction of
diethylketomalonate with propanal and (b) enantio- and chemodivergent
addition of nitrosotoluene to propanal
[13] We believe that the catalyst
9 forms a stable product iminium
carboxylate by intramolecular H-bonding with the trans-hydroxyl proton
leading to slow hydrolysis and product release. This likely leads to
epimerization and erosion of enantioselectivity. Increasing the
concentration of propanal and/or addition of acetic acid additive
resulted in an increase in ee to 65%.
In conclusion, we have developed a robust catalyst system
that delivers enantiodivergent products in
a series of α-
functionalization reactions of aldehydes. Rational design and
execution of such enantiodivergent methodologies is
unprecedented. We believe that this transition state analysis-
based approach can be extrapolated to other ‘activation modes’
within asymmetric organocatalysis and other areas of
enantioselective catalysis. This approach will be of particular
importance in reactions where both enantiomers of the chiral
catalyst are not readily available.
[14] The α-amination product 5a is derivatized to 10a for ease of HPLC
analysis, but if the derivitization is stopped at the stage of the product
alcohol, excellent isolated yields are obtained (yields for product alcohol
shown in parenthesis for entries 6-8 in Table 2).
[15] A. Bøgevig, N. Kumaragurubaran, K. A. Jørgensen, Chem. Comm.
2002, 620.
Keywords: organocatalysis • enantiodivergence • prolinate
catalysis • rational design • asymmetric catalysis
[16] (a) S. P. Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMillan, J. Am.
Chem. Soc. 2003, 125, 10808. (b) T. Kano, A. Yamamoto, H. Mii, J.
Takai, S. Shirakawa, K. Maruoka, Chem. Lett. 2008, 37, 250. (c) A.
Mielgo, I. Velilla, E. Gomez-Bengoa, C. Palomo, Chem. Eur. J. 2010,
16, 7496.
[1]
[2]
H. U. Blaser, Chem. Rev. 1992, 92, 935.
Reviews: (a) M. Bartók, Chem. Rev. 2010, 110, 1663. (b) Y. H. Kim,
Acc. Chem. Res. 2001, 34, 955. (c) M. P. Sibi, M. Liu, Curr. Org. Chem.
2001, 5, 719. (d) G. Zanoni, F. Castronovo, M. Franzini, G. Vidari, E.
Giannini, Chem. Soc. Rev. 2003, 32, 115. (e) T. Tanaka, M. Hayashi,
Synthesis. 2008, 21, 3361. Selected examples: (f) J. Wang, B. L.
Feringa, Science 2011, 331, 1429. (g) J. L. Stymiest, V. Bagutski, R. M.
French, V. K. Aggarwal, Nature 2008, 456, 778. (h) M-Q. Hua, H-F. Cui,
L. Wang, J. Nie, J-A. Ma, Angew. Chem. Int. Ed. 2010, 49, 2772;
Angew. Chem. 2010, 122, 2832. (i) S. Mortezaei, N. R. Catarineu, J. W.
Canary, J. Am. Chem. Soc. 2012, 134, 8054. (j) Y. Sohtome, T.
[17] (a) T. Kano, M. Ueda, J. Takai, K. Maruoka, J. Am. Chem. Soc. 2006,
128, 6046. (b) C. Palomo, S. Vera, I. Velilla, A. Mielgo, E. Gomez-
Bengoa, Angew. Chem. Int. Ed. 2007, 46, 8054; Angew. Chem. 2007,
119, 8200.
This article is protected by copyright. All rights reserved.