Communication
Dalton Transactions
electrostatic interaction with the highly acidic OH functionality
of TNP. This effect helps to bring TNP closer to the MOF
resulting in a better confinement of TNP into the MOF which
in turn helps in effective energy transfer from MOF to TNP
(Förster type strut-to-strut energy transfer).1k,6a
(c) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C. Y. Su,
Chem. Soc. Rev., 2014, 43, 6011–6061; (d) G. Ferey and
C. Serre, Chem. Soc. Rev., 2009, 38, 1380–1399; (e) Q.-L. Zhu
and Q. Xu, Chem. Soc. Rev., 2014, 43, 5468–5512;
(f) K. M. Choi, H. M. Jeong, J. H. Park, U. B. Zhang,
J. K. Kang and O. M. Yaghi, ACS Nano, 2014, 8, 7451–7457;
(g) R. Custelcean and B. A. Moyer, Eur. J. Inorg. Chem.,
2007, 1321–1340; (h) R. Custelcean, V. Sellin and
B. A. Moyer, Chem. Commun., 2007, 1541–1543;
(i) S. C. Sahoo, T. Kundu and R. Banerjee, J. Am. Chem.
Soc., 2011, 133, 17950–17958; ( j) M. Zhao, S. Ou and
C. D. Wu, Acc. Chem. Res., 2014, 47, 1199–1207;
(k) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf,
R. P. V. Duyne and J. T. Hupp, Chem. Rev., 2012, 112, 1105–
1125.
2 (a) M. Zhang, G. Feng, Z. Song, Y. P. Zhou, H. Y. Chao,
D. Yuan, T. T. Y. Tan, Z. Guo, Z. Hu, B. Z. Tang, B. Liu and
D. Zhao, J. Am. Chem. Soc., 2014, 136, 7241–7244;
(b) C. Wang and W. Lin, J. Am. Chem. Soc., 2011, 133, 4232–
4235; (c) K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa,
J. T. A. Jones, Y. Z. Khimyak, D. Bradshaw and
M. J. Rosseinsky, J. Am. Chem. Soc., 2010, 132, 4119–
4130.
In order to characterize the thermal stability of the
complex, thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC) were performed. As shown in
Fig. S22,† the Cd-MOF exhibited weight loss at the temperature
∼180 °C and ∼300 °C. TGA and DSC analyses also show that
the major weight loss occurred at ∼380 °C and ∼475 °C, which
can be attributed to the decomposition and combustion of the
complex. The formation of Cd-MOF complex as well as its
stability during explosive sensing was investigated with the
help of powder X-ray diffraction (PXRD) studies. A comparative
study on PXRD patterns of the Cd-MOF powder, reusable Cd-
MOF powder (obtained after one round of the sensing experi-
ment) and simulated Cd-MOF complex has been shown in
Fig. S23.† The PXRD pattern of Cd-MOF powder was found to
be similar to that of the simulated pattern. These results
support our conclusion that the present MOF maintains its
crystalline property even in the bulk phase. Moreover, the simi-
larity in PXRD patterns between unused MOF and reused MOF
powder indicated that the MOF is stable in the dispersion.
These results were further supported by FT-IR studies (Fig. S24†).
In conclusion, the development and importance of a new
Cd-MOF have been demonstrated. The results suggest that the
present MOF can act as a novel sensing platform for the highly
sensitive and selective detection of polynitrophenol-based
explosive materials. Besides, the Cd-MOF was found to be an
interesting candidate for selective detection of TNP in the pres-
ence of other nitroaromatic materials in environmental con-
ditions which may offer a broad range of applications in the
field of detection of explosive materials. The selective detec-
tion of polynitrophenols over polynitroalcohols is quite inter-
esting and a useful application of this newly developed MOF.
3 (a) Y. Salinas, R. M. Manez, M. D. Marcos, F. Sancenon,
A. M. Costero, M. Parra and S. Gil, Chem. Soc. Rev., 2012,
41, 1261–1296; (b) J. I. Steinfeld and J. Wormhoudt, Annu.
Rev. Phys. Chem., 1998, 49, 203–232.
4 H. Sohn, M. J. Sailor, D. Magde and W. C. Trogler, J. Am.
Chem. Soc., 2003, 125, 3821–3830.
5 (a) A. W. Czarnik, Nature, 1998, 394, 417–418;
(b) D. S. Moore, Rev. Sci. Instrum., 2004, 75, 2499–
2512.
6 (a) S. S. Nagarkar, B. Joarder, A. K. Chaudhari,
S. Mukherjee and S. K. Ghosh, Angew. Chem., Int. Ed., 2013,
52, 2881–2885; (b) S. S. Nagarkar, A. V. Desai and
S. K. Ghosh, Chem. Commun., 2014, 50, 8915–8918;
(c) A.-J. Lan, K.-H. Li, H.-h. Wu, D. H. Olson, T. J. Emge,
W. Ki, M.-C. Hong and J. Li, Angew. Chem., Int. Ed., 2009,
48, 2334–2338; (d) D.-X. Ma, B.-Y. Li, X.-j. Zhu, Q. Zhou,
K. Liu, G. Zeng, G.-H. Li, Z. Shi and S.-H. Feng, Chem.
Commun., 2013, 49, 8964–8966; (e) S. R. Zhang, D.-Y. Du,
J.-S. Qin, S.-J. Bao, S.-L. Li, W.-W. He, Y.-Q. Lan, P. Shen
and Z.-M. Su, Chem. – Eur. J., 2014, 20, 3589–3594;
(f) J. H. Lee, S. Kang, J. Y. Lee, J. Jaworski and J. H. Jung,
Chem. – Eur. J., 2013, 19, 16665–16671; (g) H. Xu, F. Liu,
Y. Cui, B. Chen and G. Qian, Chem. Commun., 2011, 47,
3153–3155; (h) B. Gole, A. K. Bar and P. S. Mukherjee,
Chem. Commun., 2011, 47, 12137–12139; (i) Y.-N. Gong,
L. Jiang and T.-B. Lu, Chem. Commun., 2013, 49, 11113–
11115; ( j) D. Banerjee, Z. Hu, S. Pramanik, X. Zhang,
H. Wang and J. Li, CrystEngComm, 2013, 15, 9745–9750;
(k) Y.-S. Xue, Y. He, L. Zhou, F.-J. Chen, Y. Xu, H.-B. Du,
X.-Z. You and B. Chen, J. Mater. Chem. A, 2013, 1, 4525–
4530; (l) D. Tian, Y. Li, R.-Y. Chen, Z. Chang, G.-Y. Wang
and X.-H. Bu, J. Mater. Chem. A, 2014, 2, 1465–1470;
(m) T. K. Kim, J. H. Lee, D. Moon and H. R. Moon, Inorg.
Acknowledgements
Financial support from the Department of Science and Tech-
nology (DST), India [grant no. SR/FT/CS 57/2010(G)] is thank-
fully acknowledged. R. R. K. is thankful to IIT-Mandi for her
fellowship. M. V. thanks CSIR, India for research fellowship.
We thankfully acknowledge the Director, IIT-Mandi, for
research facilities. We are grateful to the Advance Materials
Research Centre, IIT-Mandi, for sophisticated instrument
facilities. We are thankful to Dr Anirban Karmakar for his sug-
gestions during manuscript preparation. We thankfully
acknowledge the reviewers for their valuable comments.
Notes and references
1 (a) O. M. Yaghi, H. Li, C. Davis, D. Richardson and
T. L. Groy, Acc. Chem. Res., 1998, 31, 474–484; (b) Z. Hu,
B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815–5840;
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015