Russ.Chem.Bull., Int.Ed., Vol. 50, No. 7, July, 2001
1197
Emission of Ph3C * in thermolysis of Ph3COOCPh3
Based on the experimental results and published data
on CL during the thermolysis of other peroxides,1,25 we
can propose the mechanism of CL appearance during
the thermolysis of 1 (Scheme 1).
References
1. R. F. Vasil´ev, Kinet. Katal., 1999, 40, 192 [Kinet. Catal.,
1999, 40 (Engl. Transl.)].
2. K. D. Gundermann and F. McCapra, Chemiluminescence in
Organic Chemistry, Springer-Verlag, BerlinHeidelberg
New YorkLondonParisTokyo, 1987, 23, 209 pp.
3. G. B. Schuster, Acc. Chem. Res., 1979, 12, 366.
4. G. L. Sharipov, V. P. Kazakov, and G. A. Tolstikov,
Khimiya i khemilyuminestsentsiya 1,2-dioksetanov [Chemistry
and Chemiluminescence of 1,2-Dioxetanes], Nauka, Mos-
cow, 1990, 288 pp. (in Russian).
5. A. Weissberger, E. S. Proskauer, J. A. Riddick, and E. E.
Toops, Organic Solvents. Physical Properties and Methods of
Purification, Interscience Publishers, INC, New YorkLon-
don, 1955, 290 pp.
Scheme 1
Ph3COOCPh3)nPh3C
[(Ph3COOCPh3)n1
+
+ (Ph3CO ... OCPh3)...Ph3C ]
[(Ph3COOCPh3)n1, PhOCPh3, Ph2C=O*, Ph3C ]
(Ph3COOCPh3)n1, PhOCPh3, Ph2C=O, Ph3C
+
+ hν (400500 nm)
6. R. G. Bulgakov, G. Ya. Maistrenko, B. A. Tishin, G. A.
Tolstikov, and V. P. Kazakov, Dokl. Akad. Nauk SSSR,
1989, 304, 1166 [Dokl. Chem., 1989 (Engl. Transl.)].
7. W. A. Waters, The Chemistry of Free Radicals, Fellow of
Balliol College, Oxford, 1946, 320 pp.
[(Ph3COCPh3)n1, PhOCPh3, Ph2C=O, Ph3C *]
(Ph3COOCPh3)n1, PhOCPh3, Ph2C=O, Ph3C
+
8. J. Tanaka, J. Org. Chem., 1961, 26, 4203.
+ hν (500600 nm)
9. R. F. Vasil´ev, O. N. Karpukhin, and V. Ya. Shlyapintokh,
Dokl. Akad. Nauk SSSR, 1959, 125, 100 [Dokl. Chem., 1959
(Engl. Transl.)].
10. R. G. Bulgakov, Doct. Sci. (Chem.) Thesis, Institute of
Organic Chemistry, Ufa Scientific Center of the Russian
Academy of Sciences, Ufa, 1990, 446 pp. (in Russian).
11. R. G. Bulgakov, V. P. Kazakov, and G. A. Tolstikov,
J. Organomet. Chem., 1990, 387, 11.
It is known25 that the disproportionation of the tertiary
oxyl radicals R3CO in solutions occurs according to
the reaction
R3CO + R3CO
R3COR + R2CO,
(7)
and, as shown,25 excited ketones can also be formed. In
the peroxide melt, due to a lower mobility than that in a
solution, the probability of this reaction is likely higher
12. G. M. Lewis, D. Lipkin, and T. T. Magel, J. Am. Chem.
Soc., 1994, 66, 1579.
13. V. A. Smirnov and V. G. Plotnikov, Usp. Khim., 1986, 10,
1633 [Russ. Chem. Rev., 1986, 10 (Engl. Trasnl.)].
14. M. Ya. Mel´nikov and V. Ya. Smirnov, Fotokhimiya
organichenskikh radikalov [Photochemistry of Organic Radi-
cals], Izd-vo MGU, 1994, 335 (in Russian).
15. D. N. Shigorin, Yu. I. Kozlov, Optika i Spektroskopiya,
1961, 10, 600 [Opt. Spectr., 1961, 10 (Engl. Transl.)].
16. T. Izumida, Y. Tanabe, T. Ichikawa, and H. Yoshida, Bull.
Chem. Soc. Jpn., 1979, 52, 23514.
17. V. A. Rodionov and E. G. Rozantsev, Dolgozhivushchie
Radikaly [Long-lived Radicals], Nauka, Moscow, 1972,
198 pp. (in Russian).
18. V. G. Koloerova, A. N. Nikolaevskii, R. V. Kucher, and
T. A. Batrak, Dokl. Akad. Nauk SSSR, 1978, 242, 641
[Dokl. Chem., 1978 (Engl. Transl.)].
19. S. A. Khursan and R. L. Safiullin, Khim. Fiz., 1991, 10,
1625 [Russ. J. Chem. Phys., 1991, 10 (Engl. Transl.)].
20. J. A. Barltrop and D. Coyle, Excited States in Organic
Chemistry, J. Wiley and Sons, LondonNew York
SydneyToronto, 1975, 418 pp.
21. J. Schmidlin and P. Hodgson, Chem. Ber., 1910, 43, 1152.
22. S. A. Khursan and V. V. Shereshovets, Kinet. Katal., 1999,
40, 167 [Kinet. Catal., 1999, 40 (Engl. Transl.)].
23. Yu. D. Orlov and Yu. A. Lebedev, Zh. Fiz. Khim., 1991, 65,
289 [Russ. J. Phys. Chem., 1991, 65 (Engl. Transl.)].
24. S. W. Benson, Thermochemical Kinetics, J. Wiley and Sons,
New YorkLondon, 1976.
than that of the reaction of R3CO with other partici-
pants of the process. The calculation of the thermal
effect (∆H°) of the disproportional of the Ph3CO radi-
cals (see Scheme 1) using previously published data23,26
gives the value
∆H° = ∆Hf°(Ph3COPh) + ∆Hf°(Ph2CO) 2∆Hf°(Ph3CO ) =
= 52.1 + 12 270 = 75.9 (kcal mol1).
This value agrees well with the results in Ref. 1,
according to which the thermal effects of R3CO dis-
proportionation for the phenyl and alkyl derivatives,
including cyclic derivatives, differ slightly and range
within 7582 kcal mol1. Thus, the energy reserve of
the disproportionation of the Ph3CO radicals is suffi-
cient for the population of the triplet level of benzophe-
none (72 kcal mol1). The radiative deactivation of
3Ph2CO* results in phosphorescence in the region of
400500 nm (see Scheme 1). It is most likely that
Ph3C is excited due to the energy transfer to Ph3C .
The energy transfer to an acceptor decreases the lumi-
nescence intensity of a donor2 and, as can be seen in
Fig. 3, the intensity of the benzophenone component of
the CL spectrum during the thermolysis of 1 is lower
than that for 2.
25. R. F. Vasil´ev, Usp. Khim., 1970, 39, 1130 [Russ. Chem.
Rev., 1970, 39 (Engl. Transl.)].
26. NIST Standard Reference Database 19A, Version 2.02,
Gaithersburg, National Institute of Standard and Technol-
Chemiluminescence during the thermolysis of 1 is
the first example of the activation of chemical reaction
luminescence due to the energy transfer from an excited
organic molecule to a free radical.
ogy, 1994.
Received November 9, 2000;
in revised form March 12, 2001