Journal of the American Chemical Society
Page 8 of 9
Viskolcz, B.; Csizmadia, I. G. J. Phys. Chem. A 2007, 111, 13245. (e)
(21) (a) Yamada, S. Angew. Chem., Int. Ed. 1993, 32, 1083. (b)
Yamada, S. Angew. Chem., Int. Ed. 1995, 34, 1113.
Mucsi, Z.; Chass, G. A.; Viskolcz, B.; Csizmadia, I. G. J. Phys.
Chem. A 2008, 112, 9153. (f) Glover, S. A.; Rosser, A. A. J. Org.
Chem. 2012, 77, 5492. (g) Morgan, J.; Greenberg, A.; Liebman, J.
F. Struct. Chem. 2012, 23, 197. (h) Morgan, J.; Greenberg, A. J.
Chem. Thermodynamics 2014, 73, 206. (i) Morgan, J. P.; Weaver-
Guevara, H. M.; Fitzgerald, R. W.; Dunlap-Smith, A.; Greenberg,
A. Struct. Chem. 2017, 28, 327.
(6) Somayaji, V.; Brown, R. S. J. Org. Chem. 1986, 51, 2676.
(7) Ramachandran, G. N. Biopolymers 1968, 6, 1494.
(8) Cox, C.; Lectka, T. Acc. Chem. Res. 2000, 33, 849.
(9) For selected reviews, see: (a) Hall, H. K., Jr.; El-Shekeil, A.
Chem. Rev. 1983, 83, 549. (b) Yamada, S. Rev. Heteroat. Chem.
1999, 19, 203. (c) Szostak, M.; Aubé, J. Chem. Rev. 2013, 113, 5701.
For a review on anomeric amides, see: (d) Glover, S. A. Adv.
Phys. Org. Chem. 2007, 42, 35.
1
2
3
4
5
6
7
8
(22) (a) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54,
3451. (b) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(c) Kaspar, A. A.; Reichert, J. M. Drug Discov. Today 2013, 18, 807.
(23) For classic computational studies on bridged lactams, see:
(a) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993, 115,
6951. (b) Greenberg, A.; Moore, D. T.; DuBois, T. D. J. Am. Chem.
Soc. 1996, 118, 8658.
(24) For selected studies on acyclic amides, see: (a) Clayden, J.;
Lund, A.; Vallverdu, L.; Helliwell, M. Nature 2004, 431, 966. (b)
Clayden, J. Chem. Soc. Rev. 2009, 38, 817. (c) Sola, J.; Fletcher, S.
P.; Castellanos, A.; Clayden, J. Angew. Chem. Int. Ed. 2010, 49,
6836. (d) Knipe, P. C.; Thompson, S.; Hamilton, A. D. Chem. Sci.
2015, 6, 1630. For a pertinent review on acyclic ureas, see: (e)
Volz, N.; Clayden, J. Angew. Chem. Int. Ed. 2011, 50, 12148.
(25) Davidsen, S. K.; May, P. D.; Summers, J. B. J. Org. Chem.
1991, 56, 5482.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) (a) Williams, A. J. Am. Chem. Soc. 1976, 98, 5645. (b) Per-
rin, C. L. Acc. Chem. Res. 1989, 22, 268.
(11) (a) Liu, J.; Albers, M. W.; Chen, C. M.; Schreiber, S. L.;
Walsh, C. T. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 2304. (b)
Fischer, G. Chem. Soc. Rev. 2000, 29, 119. (c) Eakin, C. M.; Ber-
man, A. J.; Miranker, A. D. Nat. Struct. Mol. Biol. 2006, 13, 202.
(12) (a) Poland, B. W.; Xu, M. Q.; Quiocho, F. A. J. Biol. Chem.
2000, 275, 16408. (b) Romanelli, A.; Shekhtman, A.; Cowburn,
D.; Muir, T. W. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6397. (c)
Shemella, P.; Pereira, B.; Zhang, Y. M.; van Roey, P.; Belfort, G.;
Garde, S.; Nayak, S. K.; Biophys. J. 2007, 92, 847.
(13) (a) Lizak, C.; Gerber, S.; Numao, S.; Aebi, M.; Locher, K. P.
Nature 2011, 474, 350. (b) Lizak, C.; Gerber, S.; Michaud, G.;
Schubert, M.; Fan, Y. Y.; Bucher, M.; Darbare, T.; Aebi, M.; Rey-
mond, J. L.; Locher, K. P. Nat. Commun. 2013, 4, 2627.
(14) (a) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev.
2017, 46, 5864. (b) Meng, G.; Shi, S.; Szostak, M. Synlett 2016, 27,
2530. (c) Liu, C.; Szostak, M. Chem. Eur. J. 2017, 23, 7157. (d)
Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
(26) See the Supporting Information.
(27) (a) Meng, G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335.
(b) Shi, S.; Szostak, M. Org. Lett. 2016, 18, 5872. (c) Meng, G.;
Szostak, M. ACS Catal. 2017, 7, 7251.
(28) (a) Larock, R. C. Comprehensive Organic Transfor-
mations; Wiley: New York, 1999. (b) Zabicky, J. The Chemistry of
Amides; Interscience: New York, 1970.
(29) (a) Szostak, R.; Aubé, J.; Szostak, M. Chem. Commun.
2015, 51, 6395. For relevant studies on amide bond destabiliza-
tion, see: (b) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szos-
tak, M. J. Org. Chem. 2016, 81, 8091. (c) Szostak, R.; Meng, G.;
Szostak, M. J. Org. Chem. 2017, 82, 6373.
(30) Johansson, K. E.; van de Streek, J. Cryst. Growth Des.
2016, 16, 1366 and references cited therein.
(31) (a) Szostak, M.; Yao, L.; Aubé, J. J. Am. Chem. Soc. 2010,
132, 2078. For an excellent overview of stereoelectronic effects,
see: (b) Adler, M.; Adler, S.; Boche, G. J. Phys. Org. Chem. 2005,
18, 193.
(32) (a) Izzo, P. T.; Safir, S. R. J. Org. Chem. 1959, 24, 701; (b)
Dieter, R. K. Tetrahedron 1999, 55, 4177. (c) Wang, X. J.; Zhang,
L.; Sun, X.; Xu, Y.; Krishnamurthy, D.; Senanayake, C. H. Org.
Lett. 2005, 7, 5593.
(33) (a) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor,
J. L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652. (b)
See, Refs. 24a-d.
(15) (a) Science of Synthesis: Cross-Coupling and Heck-Type
Reactions, Molander, G. A.; Wolfe, J. P.; Larhed, M., Eds.;
Thieme: Stuttgart, 2013. (b) Metal-Catalyzed Cross-Coupling
Reactions and More, de Meijere, A.; Bräse, S.; Oestreich, M., Eds.;
Wiley: New York, 2014.
(16) For representative examples, see: (a) Ref. 2. (b) Liniger,
M.; VanderVelde, D. G.; Takase, M. K.; Shahgholi, M.; Stoltz, B.
M. J. Am. Chem. Soc. 2016, 138, 969. For a recent synthesis of the
elusive bridged “smissmanone”, see: (c) Liniger, M.; Liu, Y.;
Stoltz, B. J. Am. Chem. Soc. 2017, 139, 13944. For the classic syn-
thesis of 1-aza-2-adamantanone, see: (d) Kirby, A. J.; Komarov, I.
V.; Wothers, P. D.; Feeder, N. Angew. Chem., Int. Ed. 1998, 37,
785. (e) Komarov, I. V.; Yanik, S.; Ishchenko, A. Y.; Davies, J. E.;
Goodman, J. M.; Kirby, A. J. J. Am. Chem. Soc. 2015, 137, 926. (f)
Golden, J.; Aubé, J. Angew. Chem. Int. Ed. 2002, 41, 4316. (g) Lei,
Y.; Wrobleski, A. D.; Golden, J. E.; Powell, D. R.; Aubé, J. J. Am.
Chem. Soc. 2005, 127, 4552. (h) Sliter, B.; Morgan, J.; Greenberg,
A. J. Org. Chem. 2011, 76, 2770 and references cited therein. For a
recent synthesis of Tröger's base twisted amides, see: (i) Artacho,
J.; Ascic, E.; Rantanen, T.; Karlsson, J.; Wallentin, C. J.; Wang, R.;
Wendt, O. F.; Harmata, M.; Snieckus, V.; Wärnmark, K. Chem.
Eur. J. 2012, 18, 1038.
(17) Winkler, F. K.; Dunitz, J. D. J. Mol. Biol. 1971, 59, 169.
(18) Adachi, S.; Kumagai, N.; Shibasaki, M. Chem. Sci. 2017, 8,
85.
(19) Hutchby, M.; Houlden, C. E.; Haddow, M. F.; Tyler, S. N.;
Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., Int. Ed.
2012, 51, 548.
(20) (a) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364. (b)
Pace, V.; Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.;
Szostak, M. Chem. Eur. J. 2016, 22, 14494.
(34) Hu, F.; Lalancette, R.; Szostak, M. Angew. Chem. Int. Ed.
2016, 55, 5062.
(35) (a) Hegarty, A. F.; McCormack, M. T.; Brady, K.; Fergu-
son, G.; Roberts, P. J. J. Chem. Soc., Perkin Trans. 2 1980, 867. (b)
Brady, K.; Hegarty, A. F. J. Chem. Soc., Perkin Trans. 2 1980, 121.
(c) Tailhades, J.; Patil, N. A.; Hossain, M. A.; Wade, J. D. J. Pept.
Sci. 2015, 21, 139.
(36) (a) Gibson, F. S.; Bergmeier, S. C.; Rapoport, H. J. Org.
Chem. 1994, 59, 3216. (b) See, Ref. 16e.
(37) Geometry optimization was performed at the B3LYP/6-
311++G(d,p) level. Extensive studies have shown that this level is
accurate in predicting properties and resonance energies of am-
ides.5f,29 This method was further verified by obtaining good
correlations between the calculated structures and available X-
ray structures in the series.26
(38) (a) Itai, A.; Toriumi, Y.; Saito, S.; Kagechika, H.; Shudo, K.
J. Am. Chem. Soc. 1992, 114, 10649. (b) Forbes, C. C.; Beatty, A. M.;
Smith, B. D. Org. Lett. 2001, 3, 3595. (c) Dugave, C.; Demange, L.
Chem. Rev. 2003, 103, 2475.
(39) Etter, M. C.; Britton, D.; Reutzel, S. M. Acta Cryst. 1991,
C47, 556.
(40) (a) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic
Compounds; Wiley: New York, 1994. (b) Gawley, R.; Aubé, J.
Principles of Asymmetric Synthesis; Elsevier: Oxford, 2012.
ACS Paragon Plus Environment