1
254 Chem. Res. Toxicol., Vol. 23, No. 7, 2010
Garcia et al.
Acknowledgment. This work was supported by the Fun-
(19) International Agency for Research on Cancer (1985) Allyl Compounds,
Aldehydes, Epoxides and Peroxides. In Monographs on the EValuation
of the Carcinogenic Risk of Chemicals to Humans,Vol. 36, pp 101-
da c¸ a˜ o de Amparo a` Pesquisa do Estado de S a˜ o Paulo,
FAPESP (Brazil), the Conselho Nacional para o Desenvolvi-
mento Cient ´ı fico e Tecnol o´ gico, CNPq (Brazil), Coordena c¸ a˜ o
de Aperfei c¸ oamento de Pessoal de N ´ı vel Superior, CAPES,
and Instituto Nacional de Ci eˆ ncia e Tecnologia de Processos
Redox em Biomedicina-Redoxoma (INCT - Redoxoma).
1
32, International Agency for Research on Cancer, Lyon, France.
(20) International Agency for Research on Cancer (1999) Re-Evaluation
of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide (Part
Two). In Monographs on the EValuation of the Carcinogenic Risk of
Chemicals to Humans, Vol. 71, pp 319-335, International Agency
for Research on Cancer, Lyon, France.
(
21) Jones, A. W. (1995) Measuring and reporting the concentration of
1
Supporting Information Available: H NMR spectrum and
acetaldehyde in human breath. Alcohol 30, 271–285.
2
circular dichroism spectra of (6R,8R) and (6S,8S) 1,N -propanod-
(22) Salaspuro, V., and Salaspuro, M. (2004) Synergistic effect of alcohol
drinking and smoking on in vivo acetaldehyde concentration in saliva.
Int. J. Cancer 111, 480–483.
Guo. This material is available free of charge via the Internet
at http://pubs.acs.org.
(
23) Sako, M., Inagaki, S., Esaka, Y., and Deyashiki, Y. (2003) Histones
accelerate the cyclic 1,N 2-propanoguanine adduct-formation of DNA
by the primary metabolite of alcohol and carcinogenic crotonaldehyde.
Bioorg. Med. Chem. Lett. 13, 3497–3498.
References
(
24) Theruvathu, J. A., Jaruga, P., Nath, R. G., Dizdaroglu, M., and Brooks,
P. J. (2005) Polyamines stimulate the formation of mutagenic 1,N
2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids
Res. 33, 3513–3520.
(
(
1) Blair, I. A. (2008) DNA adducts with lipid peroxidation products.
J. Biol. Chem. 283, 15545–15549.
2) Medeiros, M. H. G. (2009) Exocyclic DNA adducts as biomarkers of
lipid oxidation and predictors of disease. Challenges in developing
sensitive and specific methods for clinical studies. Chem. Res. Toxicol.
(25) Cho, Y. J., Wang, H., Kozekov, I. D., Kurtz, A. J., Jacob, J., Voehler,
M., Smith, J., Harris, T. M., Lloyd, R. S., Rizzo, C. J., and Stone,
M. P. (2006) Stereospecific formation of interstrand carbinolamine
DNA cross-links by crotonaldehyde- and acetaldehyde-derived alpha-
CH3-gamma-OH-1,N 2-propano-2′-deoxyguanosine adducts in the 5′-
CpG-3′ sequence. Chem. Res. Toxicol. 19, 195–208.
(26) Stein, S., Lao, Y., Yang, I. Y., Hecht, S. S., and Moriya, M. (2006)
Genotoxicity of acetaldehyde- and crotonaldehyde-induced 1,N2-
propanodeoxyguanosine DNA adducts in human cells. Mutat. Res. 608,
1–7.
(27) Kozekov, I. D., Nechev, L. V., Moseley, M. S., Harris, C. M., Rizzo,
C. J., Stone, M. P., and Harris, T. M. (2003) DNA interchain cross-
links formed by acrolein and crotonaldehyde. J. Am. Chem. Soc. 125,
50–61.
(28) Kurtz, A. J., and Lloyd, R. S. (2003) 1,N 2-deoxyguanosine adducts
of acrolein, crotonaldehyde, and trans-4-hydroxynonenal cross-link to
peptides via Schiff base linkage. J. Biol. Chem. 278, 5970–5976.
(29) Arab, K., Pedersen, M., Nair, J., Meerang, M., Knudsen, L. E., and
Bartsch, H. (2009) Typical signature of DNA damage in white blood
cells: a pilot study on etheno adducts in Danish mother-newborn child
pairs. Carcinogenesis 30, 282–285.
(30) Awada, M., and Dedon, P. C. (2001) Formation of the 1,N 2-glyoxal
adduct of deoxyguanosine by phosphoglycolaldehyde, a product of
3′-deoxyribose oxidation in DNA. Chem. Res. Toxicol. 14, 1247–1253.
(31) Barbin, A. (2000) Etheno-adduct-forming chemicals: from mutage-
nicity testing to tumor mutation spectra. Mutat. Res. 462, 55–69.
(32) Langouet, S., Mican, A. N., Muller, M., Fink, S. P., Marnett, L. J.,
Muhle, S. A., and Guengerich, F. P. (1998) Misincorporation of
nucleotides opposite five-membered exocyclic ring guanine derivatives
by escherichia coli polymerases in vitro and in vivo: 1, N2-
ethenoguanine, 5,6,7,9-tetrahydro-9-oxoimidazo[1,2-a]purine, and 5,6,7,9-
tetrahydro-7-hydroxy-9-oxoimidazo[1, 2-a]purine. Biochemistry 37,
5184–5193.
(33) Langouet, S., Muller, M., and Guengerich, F. P. (1997) Misincorpo-
ration of dNTPs opposite 1, N2-ethenoguanine and 5,6,7,9-tetrahydro-
7-hydroxy-9-oxoimidazo[1,2-a]purine in oligonucleotides by Escher-
ichia coli polymerases I exo- and II exo-, T7 polymerase exo-, human
immunodeficiency virus-1 reverse transcriptase, and rat polymerase
beta. Biochemistry 36, 6069–6079.
(34) Wang, L., Hirayasu, K., Ishizawa, M., and Kobayashi, Y. (1994)
Purification of genomic DNA from human whole blood by isopro-
panol-fractionation with concentrated Nal and SDS. Nucleic Acids Res.
22, 1774–1775.
(35) Loureiro, A. P. M., Di Mascio, P., Gomes, O. F., and Medeiros,
M. H. G. (2000) trans,trans-2,4-decadienal-induced 1,N2-etheno-2′-
deoxyguanosine adduct formation. Chem. Res. Toxicol. 13, 601–609.
(36) Loureiro, A. P. M., Marques, S. A., Garcia, C. C. M., Di Mascio, P.,
and Medeiros, M. H. G. (2002) Development of an on-line liquid
chromatography-electrospray tandem mass spectrometry assay to
quantitatively determine 1,N2-etheno-2′-deoxyguanosine in DNA.
Chem. Res. Toxicol. 15, 1302–1308.
2
2, 419–425.
(
(
3) Chung, F. L., Nath, R. G., Nagao, M., Nishikawa, A., Zhou, G. D.,
and Randerath, K. (1999) Endogenous formation and significance of
1
,N 2-propanodeoxyguanosine adducts. Mutat. Res. 424, 71–81.
4) Minko, I. G., Kozekov, I. D., Harris, T. M., Rizzo, C. J., Lloyd, R. S.,
and Stone, M. P. (2009) Chemistry and biology of DNA containing
1
, N(2)-deoxyguanosine adducts of the alpha,beta-unsaturated alde-
hydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem. Res.
Toxicol. 22, 759–778.
(
5) Golding, B. T., Slaich, P. K., Kennedy, G., Bleasdale, C., and Watson,
W. P. (1996) Mechanisms of formation of adducts from reactions of
glycidaldehyde with 2′-deoxyguanosine and/or guanosine. Chem. Res.
Toxicol. 9, 147–157.
6) Petrova, K. V., Jalluri, R. S., Kozekov, I. D., and Rizzo, C. J. (2007)
Mechanism of 1, N 2-etheno-2′-deoxyguanosine formation from
epoxyaldehydes. Chem. Res. Toxicol. 20, 1685–1692.
(
(
(
7) Akasaka, S., and Guengerich, F. P. (1999) Mutagenicity of site-
specifically located 1,N 2-ethenoguanine in Chinese hamster ovary
cell chromosomal DNA. Chem. Res. Toxicol. 12, 501–507.
8) Fernandes, P. H., Kanuri, M., Nechev, L. V., Harris, T. M., and Lloyd,
R. S. (2005) Mammalian cell mutagenesis of the DNA adducts of
vinyl chloride and crotonaldehyde. EnViron. Mol. Mutagen. 45, 455–
4
59.
(
9) Zhang, H., Beckman, J. W., and Guengerich, F. P. (2009) Frameshift
deletion by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W
is selective for purines and involves normal conformational change
followed by slow phosphodiester bond formation. J. Biol. Chem. 284,
3
5144–35153.
(
(
10) Nair, U., Bartsch, H., and Nair, J. (2007) Lipid peroxidation-induced
DNA damage in cancer-prone inflammatory diseases: a review of
published adduct types and levels in humans. Free Radical Biol. Med.
4
3, 1109–1120.
11) International Agency for Research on Cancer (1995) Dry Cleaning
Some Chlorinated Solvents and Others Chemicals. In Monographs
on the EValuation of the Carcinogenic Risk of Chemicals to Humans,
Vol. 63, pp 33-477, International Agency for Research on Cancer,
Lyon, France.
12) International Agency for Research on Cancer (1995) Crotonaldehyde.
In Monographs on the EValuation of the Carcinogenic Risk of
Chemicals to Humans,Vol. 63, pp 373-391, International Agency for
Research on Cancer, Lyon, France.
13) Eder, E., and Budiawan. (2001) Cancer risk assessment for the
environmental mutagen and carcinogen crotonaldehyde on the basis
of TD(50) and comparison with 1, N(2)-propanodeoxyguanosine
adduct levels. Cancer Epidemiol. Biomarkers PreV. 10, 883–888.
14) Eder, E., Schuler, D., and Budiawan. (1999) Cancer risk assessment
for crotonaldehyde and 2-hexenal: an approach. IARC Sci. Publ. 219–
(
(
(
(
2
32.
15) Chung, F. L., Young, R., and Hecht, S. S. (1984) Formation of cyclic
,N 2-propanodeoxyguanosine adducts in DNA upon reaction with
1
(37) Nath, R. G., and Chung, F. L. (1994) Detection of exocyclic 1,N2-
propanodeoxyguanosine adducts as common DNA lesions in rodents
and humans. Proc. Natl. Acad. Sci. U.S.A. 91, 7491–7495.
(38) Nath, R. G., Ocando, J. E., and Chung, F. L. (1996) Detection of 1,
N2-propanodeoxyguanosine adducts as potential endogenous DNA
lesions in rodent and human tissues. Cancer Res. 56, 452–456.
(39) Budiawan and Eder, E. (2000) Detection of 1, N(2)-propanodeox-
yguanosine adducts in DNA of Fischer 344 rats by an adapted (32)P-
post-labeling technique after per os application of crotonaldehyde.
Carcinogenesis 21, 1191–1196.
acrolein or crotonaldehyde. Cancer Res. 44, 990–995.
(
16) Hecht, S. S., McIntee, E. J., and Wang, M. (2001) New DNA adducts
of crotonaldehyde and acetaldehyde. Toxicology 166, 31–36.
17) Vaca, C. E., Fang, J. L., and Schweda, E. K. (1995) Studies of the
reaction of acetaldehyde with deoxynucleosides. Chem.-Biol. Interact.
(
9
8, 51–67.
(
18) Wang, M., McIntee, E. J., Cheng, G., Shi, Y., Villalta, P. W., and
Hecht, S. S. (2000) Identification of DNA adducts of acetaldehyde.
Chem. Res. Toxicol. 13, 1149–1157.