Angewandte Chemie International Edition
10.1002/anie.201905045
COMMUNICATION
insert back into a Al-Hydride based cycle resulting in hemi-acetal
and methanol derivatives. Addition of 1 eq. of HBpin to 4t resulted
in the consumption of starting materials and a mixture of species,
however no products that were identified in the catalysis were
observed indicating that this stoichiometric reaction is not
representative of the active catalytic cycle. Subsequent
computational analysis found the conversion of 4 to 5 to be
[5]
D. S. Laitar, P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127,
1
7196-17197.
W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev. 2011, 40,
703-3727.
[6]
3
[
[
[
7]
8]
9]
P. P. Power, Nature 2010, 463, 171-177.
C. Weetman, S. Inoue, ChemCatChem 2018, 10, 4213-4228.
D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2009, 49, 46-76.
[10] D. F. Wass, A. M. Chapman, in Frustrated Lewis Pairs II: Expanding the
Scope (Eds.: G. Erker, D. W. Stephan), Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 261-280.
-1
energetically uphill (+23.1 kcal mol ) and therefore unfavourable.
Further computational studies, taking into account the combined
[11] D. Stephan, W., G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441.
effect of CO
2
and HBpin, revealed a facile transformation (overall
-1
[12] L. Li, T. Fukawa, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K.
-
13.4 kcal mol ). Initial coordination of HBpin to the exocyclic
Tamao, Nature Chemistry 2012, 4, 361.
oxygen of the carbonate fragment occurs followed by subsequent
hydride transfer. This hydride transfer is proposed to be rate
determining, as +22.2 kcal mol-1 is required to reach the transition
state (TS1, Scheme 3), this is subsequently offset by -26.6 kcal
[
13] I. Alvarado-Beltran, A. Rosas-Sánchez, A. Baceiredo, N. Saffon-
Merceron, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2017, 56,
10481-10485.
[14] A. Stoy, J. Böhnke, J. O. C. Jiménez-Halla, R. D. Dewhurst, T. Thiess,
H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 5947-5951.
-1
mol upon formation of the reduced carbonate (E). Next a
concerted mechanism is proposed, in which CO coordination at
[15] N. Wiberg, W. Niedermayer, K. Polborn, P. Mayer, Chem. Eur. J. 2002,
2
8, 2730-2739.
the opposite plane of Al---Al (TS2) causes reformation of
carbonate moiety. The 8-membered ring (F) breaks down
releasing the formic acid derivative and reforming compound 4 in
[
[
[
16] D. Wendel, T. Szilvási, D. Henschel, P. J. Altmann, C. Jandl, S. Inoue, B.
Rieger, Angew. Chem. Int. Ed. 2018, 57, 14575-14579.
17] D. Gau, R. Rodriguez, T. Kato, N. Saffon-Merceron, A. de Cózar, F. P.
Cossío, A. Baceiredo, Angew. Chem. Int. Ed. 2011, 50, 1092-1096.
18] Y. Wang, M. Chen, Y. Xie, P. Wei, H. F. Schaefer, G. H. Robinson, J.
Am. Chem. Soc. 2015, 137, 8396-8399.
-1
an overall facile transformation (5.0 kcal mol ).
In summary, we report CO fixation by an aluminium-
aluminium double bond which promotes both catalytic and
stoichiometric reduction of CO to value added C products under
2
2
1
[19] J. Li, M. Hermann, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2012,
51, 8611-8614.
mild conditions. Extension of this work to include catalytic turnover,
provided facile transformation to a formic acid derivative under
ambient conditions and represents one of the first examples of
catalysis using a homonuclear main group multiple bond.
[
20] I. Castro-Rodriguez, K. Meyer, J. Am. Chem. Soc., 2005, 127 (32),
1242–11243.
1
[
21] O. Cooper, C. Camp, J. Pécaut, C. E. Kefalidis, L. Maron, S. Gambarelli,
M. Mazzanti, J. Am. Chem. Soc., 2014, 136 (18), 6716–6723.
22] C. Präsang, D. Scheschkewitz, Chem. Soc. Rev. 2016, 45, 900-921.
23] M. Arrowsmith, H. Braunschweig, T. E. Stennett, Angew. Chem. Int. Ed.
2017, 56, 96-115.
[
[
Acknowledgements
[24] P. Bag, C. Weetman, S. Inoue, Angew. Chem. Int. Ed. 2018, 57, 14394-
1
4413.
We are grateful to Franziska Hanusch (TUM) for solving and
refining compound 3, as well as Dr. Alexander Pöthig for
crystallographic advice. This project has received funding from
the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement No
[
25] G. A. Olah, Friedel-Crafts and Related Reactions, Wiley, New York, 1963
26] J. Boor, Jr. Zieglar-Natta catalysts and polymerisations, Academic Press
Inc., New York, 1979.
[
[
27] T. Chu, G. I. Nikonov, Chem. Rev. 2018, 118, 3608-3680.
28] J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Nature 2018, 557, 92-
[
95.
7
54462 and TUM University Foundation (Fellowships CW).
[
[
[
[
[
[
[
29] R. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles, Angew. Chem. Int.
Ed, 2019, 58, 1489-1493.
30] P. Bag, A. Porzelt, P. J. Altmann, S. Inoue, J. Am. Chem. Soc. 2017, 139,
Keywords: Aluminium • Multiple Bonds • Carbon Dioxide
Fixation • Subvalent Compounds • Catalysis
1
4384-14387.
31] C. C. Lu, C. T. Saouma, M. W. Day, J. C. Peters, J. Am. Chem. Soc.
007, 129, 4-5.
32] R. Shimogawa, T. Takao, G.-i. Konishi, H. Suzuki, Organometallics 2014,
3, 5066-5069.
33] C. Xu, L. Manceron, J. P. Perchard, J. Chem. Soc., Faraday Trans. 1993,
9, 1291-1298.
2
[
1]
IPCC, Special Report on Carbon Dioxide Capture and Storage,
Cambridge University Press, Cambridge, UK, 2005
3
[
2]
3]
IPCC, Climate Change 2007: Synthesis Report Geneva, 2007.
A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M.
Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H.
Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J.
N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev.
[
8
34] Z. Zhu, R. J. Wright, Z. D. Brown, A. R. Fox, A. D. Phillips, A. F. Richards,
M. M. Olmstead, P. P. Power, Organometallics 2009, 28, 2512-2519.
35] H. Zhu, J. Chai, V. Jancik, H. W. Roesky, W. A. Merrill, P. P. Power, J.
Am. Chem. Soc. 2005, 127, 10170-10171.
2
013, 113, 6621-6658.
S. D. Allen, C. M. Byrne, G. W. Coates, in Feedstocks for the Future, Vol.
21, American Chemical Society, 2006, pp. 116-129;
[
4]
9
This article is protected by copyright. All rights reserved.