Page 7 of 9
Medicinal Chemistry Communications
DOI: 10.1039/C4MD00224E
Thus, this modelling study suggests that the compounds of the
benzothiazoleꢀ2ꢀcarboxamide series might be acting on Mtb
HisG.
2. World Health Organization (WHO), Global tuberculosis report
2013,http://www.who.int/tb/publications/global_report/gtbr13
main_text.pdf
4
5
5
6
6
7
5
0
5
0
5
0
3
.
R. Diel, R. Loddenkemper, J. P. Zellweger, G. Sotgiu, L.
D'Ambrosio, R. Centis, M. J. van der Werf, M. Dara, A.
Detjen, P. Gondrie, L. Reichman, F. Blasi and G. B Migliori,
Eur. Respir. J., 2013, 42, 785.
4
.
M. Raviglione, B. Marais, K. Floyd, K. Lönnroth, H. Getahun,
G. B. Migliori, A. D. Harries, P. Nunn, C. Lienhardt, S.
Graham, J. Chakaya, K. Weyer, S. Cole, S. H. Kaufmann and
A. Zumla, Lancet, 2012, 379, 1902.
5. D. Falzon et al. Eur. Respir. J., 2011, 38, 516.
6
.
K. R. Jacobson, D. B. Tierney, C. Y. Jeon, C. D. Mitnick and
M. B. Murray Clin. Infect. Dis., 2010, 51, 6.
7
.
Z. F. Udwadia, R. A. Amale, K. K. Ajbani and C. Rodrigues,
Clin. Infect. Dis., 2012, 54, 579.
8. D. J. Pepper, G. A. Meintjes, H. Mcilleron and R. J Wilkinson,
Drug. Disc. Today, 2007, 12, 980.
9
1
.
N. R. Gandhi et al. Lancet, 2006, 368, 1575.
0. S. Janssen, R. Jayachandran, L. Khathi, J. Zinsstag, M. P.
Grobusch and J. Pieters, Drug Des. Dev. Ther., 2012, 6, 217.
11. A. Zumla, P. Nahid and S. T. Cole, Nat. Rev. Drug Disc.,
2013, 12, 388.
5
1
1
2. L. Katz, J. Am. Chem. Soc., 1953, 75, 712.
3. J. Kocí, V. Klimesová, K. Waisser, J. Kaustová, H.ꢀM. Dahse
and U. Möllmann, Bioorg. Med. Chem. Lett., 2002, 12, 3275.
Figure 5. Comparative analysis of pharmacophoric features between
natural ligand of HisG: Phosphoribosyl ATP (PRATP) and literature
reported Mtb inhibitors.
14. K. P. Bhusari, N. D. Amnerkar, P. B. Khedekar, M. K. Kale
and R. P. Bhole, Asian J. Res. Chem., 2008, 1, 53.
Conclusion
15. Y. Cho, T. R. Ioerger and J. C. Sacchettini, J. Med. Chem.,
2
008, 51, 5984.
1
1
2
2
0
5
0
5
The present work reveals Nꢀarylmethylbenzo[d]thiazoleꢀ2ꢀ
carboxamide as a new antiꢀTB scaffold. Forty one compounds in
the series have been prepared by three newly developed synthetic
methods and evaluated in vitro for their potential as antiꢀTB drug
candidate. Twelve compounds displayed good in vitro
antimycobacterial activity, with MIC in low micromolar range
against replicating TB and are, in general, nonꢀtoxic to HEK
1
1
6. Q. Huang, J. Mao, B. Wan, Y. Wang, R. Brun, S. G. Franzblau
and A. P. Kozikowski, J. Med. Chem., 2009, 52, 6757.
7. N. B. Patel, I. H. Khan and S. D. Rajani, Eur. J. Med. Chem.,
75
80
2
010, 45, 4293.
1
1
8. K. Hazra et al. Arch. Pharm. Chem. Life Sci., 2012, 345, 137.
9. A. Kamal, R. V. Shetti, P. Swapna, A. Shaik, A. M. Reddy, I.
A. Khan, T. A. Sheikh, S. Sharma and N. P. Kalia, US
2012/0095021 A1, 2012.
2
2
0. V. Purohit and A. K. Basu, Chem. Res. Toxicol., 2000, 13,
2
93T cell lines (< 50% inhibition at 50 µg/mL). The most potent
compound 5bf exhibits MIC of 0.78 µg/mL (therapeutic index >
0), more than that of the standard drugs E, Z and Cfx. The
6
73.
1. a) S. Bhagat, P. Shah, S. K. Garg, S. Mishra, P. K. Kaur,S
Singh and A. K. Chakraborti, Med. Chem. Commun., 2014, 5,
665. (b) K. Seth, S. K. Garg, R. Kumar, P. Purohit, V. S.
Meena, R. Goyal, U. C. Banerjee and A. K. Chakraborti, ACS
Med Chem. Lett. 2014, 5, 512. For review (c) H. Sun, G. Tawa
and A. Wallqvist, Drug Discov. Today, 2012, 17, 310.
6
8
9
9
5
0
5
significant increase in antiꢀTB activity with the 5ꢀCl substituted
benzothiazole derivatives shows further scope for improvement
in antiꢀTB activity. The molecular docking study with 5bf
suggests that the antiꢀTB benzothiazoleꢀ2ꢀcarboxamides might be
acting on Mtb HisG. The docking information may provide
valuable guiding principle for future design to evolve more potent
antiꢀTB molecules. In fine, this study has provided novel antiꢀTB
lead and can be a useful starting point for further exploration in
this area.
22. Scaffold hopping through the reverse amide staretgy generated
more potent COXꢀ2 selective agents [A. S. Kalgutkar, B. C.
Crews, S. Saleh, D. Prudhomme and L. J. Marnett, Bioorg.
Med. Chem., 2005, 13, 6810].
2
3. M. L Mitchell, P. A. Roethle, L. Xu, H. Yang, R. McFadden,
and K. Babaoglu, WO Patent 2012/145728 A1, 2012.
4. A. Mckillop, A. Henderson, P. S. Ray, C. Avendano and E. G.
Molinero, Tetrahedron Lett., 1982, 23, 3357.
2
Notes and references
25. J. H. Musser, T. T. Hudec and K. Bailey, Synth. Commun.,
984, 14, 947.
26. G. Liso, G. Trapani and A. Latrofa, J. Heterocycl. Chem.,
987, 24, 1683.
1
3
3
0
5
* Corresponding author
1
00
a
Department of Medicinal Chemistry, National Institute of
1
Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S.
Nagar 160 062, Punjab, India.
2
7. A. K. Chakraborti, S. Rudrawar, K. B. Jadhav, G. Kaur and S.
V. Chankeshwara, Green Chem., 2007, 9, 1335.
28. N. Parikh, D. Kumar, S. R. Roy and A. K. Chakraborti, Chem.
Comm., 2011, 47, 1797.
29. S. Rudrawar, A. Kondaskar and A. K. Chakraborti, Synthesis,
2005, 2521.
Fax: 91-(0)-172 2214692; Tel: 91-(0)-172 2214683;
105
b
Department of Pharmacy, Birla Institute of Technology & Science –
Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India.
3
0. D. Kumar, S. Rudrawar and A. K. Chakraborti, Aust. J. Chem.,
2008, 61, 881.
†
Electronic Supplementary Information (ESI) available: [Procedure for
4
0
the synthesis, molecular modelling, spectral characterization and 110
31. A. K. Chakraborti, C. Selvam, G. Kaur and S. Bhagat, Synlett,
biological evaluation is described ]. See DOI: 10.1039/b000000x/
2004, 851.
1
.
A. Zumla, M. Raviglione, R. Hafner and C. F. von Reyn, New
Engl. J. Med., 2013, 368, 745.
32. R. Kumar, C. Selvam, G. Kaur and A. K. Chakraborti, Synlett,
2005, 1401.
3
3. J. Potoski, Drug Disc. Today, 2005, 10, 115.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |
7