Angewandte Chemie International Edition
10.1002/anie.202011914
RESEARCH ARTICLE
blood vessels nearby the spinal cord could also be easily
visualized but the Pttc-SeBTa-NIR1380 Pdots offered a much
higher resolution due to the low background interference (Figure
Areas Research Center Program within the framework of the
Higher Education Sprout Project by the Ministry of Education
(MOE) in Taiwan.
5G-H). It should be noted that the direct comparison of spatial
resolution and SBR with other imaging platforms might be less
scientifically important because these values depend highly on
the quantum efficiency of CCD camera, the concentration of
probes, imaging software, and the power/wavelength of the
excitation light; rather than simply on the fluorescence brightness
of the probes used. The cerebral blood vessels of mouse through
intact scalp and skull could be distinctly delineated with fine
vascular structures (Figure 5I) by taking the advantages of high
penetration depth and minimized background interference in the
NIR-II window. The sharp resolution of NIR-IIb imaging were
again highlighted by the use of Pttc-SeBTa-NIR1380 Pdots
Keywords: semiconducting polymers • NIR-II • narrow-band
fluorescence • synthesis of Pdots • deep-tissue imaging
[1]
aH.-W. Liu, L. Chen, C. Xu, Z. Li, H. Zhang, X.-B. Zhang, W. Tan,
Chem. Soc. Rev. 2018, 47, 7140-7180; bB. R. Smith, S. S. Gambhir, Chem.
Rev. 2017, 117, 901-986.
[2]
aE. M. Sevick-Muraca, Annu. Rev. Med. 2012, 63, 217-231; bG. Hong,
S. Diao, J. Chang, A. L. Antaris, C. Chen, B. Zhang, S. Zhao, D. N. Atochin, P.
L. Huang, K. I. Andreasson, C. J. Kuo, H. Dai, Nat. Photonics 2014, 8, 723-
7
30.
[3]
aD.-H. Li, C. L. Schreiber, B. D. Smith, Angew. Chem. Int. Ed. 2020,
59, 2-10; bY. Li, Z. Cai, S. Liu, H. Zhang, S. T. H. Wong, J. W. Y. Lam, R. T.
K. Kwok, J. Qian, B. Z. Tang, Nat. Commun. 2020, 11, 1255; cY. Li, Y. Liu, Q.
Li, X. Zeng, T. Tian, W. Zhou, Y. Cui, X. Wang, X. Cheng, Q. Ding, X. Wang,
J. Wu, H. Deng, Y. Li, X. Meng, Z. Deng, X. Hong, Y. Xiao, Chem. Sci. 2020,
(middle panel in Figure 5I). Benefiting from the ability of through-
1
[
1
1, 2621-2626.
4] aH. Wan, H. Du, F. Wang, H. Dai, Adv. Funct. Mater. 2019, 29,
900566; bKenry, Y. Duan, B. Liu, Adv. Mater. 2018, 30, 1802394; cX. Dang,
skull/scalp NIR-II imaging, we aim to the diagnose the malignant
brain tumor in vivo from the vascular morphology in the mouse
brain. Here we selected a ND2:SmoA1 transgenic mouse as the
model because medulloblastomas in ND2:SmoA1 mice and
humans have concomitant increase in certain signaling pathway
activities for tumor survival and medulloblastoma is the most
common type of malignant brain tumor that afflicts children. As
shown in Figure 5J, the brain vasculature in the ND2:SmoA1
mouse exhibited a major area of structural disorder in the brain
vasculature. On the other hand, the brain vasculature in the wild-
type C57BL/6 mouse appeared to be orderly arranged and
distributed in the brain. These results demonstrate that the deep-
tissue NIR-II imaging presents to be a promising new technique
for the early diagnosis of diseases associated with the brain blood
vessel abnormality. The mice were further anatomized to analyze
the Pdot distribution in major organs, where the fluorescence was
found mostly in liver, kidney, and spleen (Figure 5K). The high
accumulation of Pdots in liver and spleen suggested that the
hepatobiliary clearance system was the main metabolic pathway
of Pdots.
L. Gu, J. Qi, S. Correa, G. Zhang, A. M. Belcher, P. T. Hammond, Proc. Natl.
Acad. Sci. U. S. A. 2016, 113, 5179-5184; dD. Kobat, N. G. Horton, C. Xu, J.
Biomed. Opt. 2011, 16, 106014; eF. Wang, H. Wan, Z. Ma, Y. Zhong, Q. Sun,
Y. Tian, L. Qu, H. Du, M. Zhang, L. Li, H. Ma, J. Luo, Y. Liang, W. J. Li, G.
Hong, L. Liu, H. Dai, Nat. Methods 2019, 16, 545-552; fQ. Yang, Z. Hu, S.
Zhu, R. Ma, H. Ma, Z. Ma, H. Wan, T. Zhu, Z. Jiang, W. Liu, L. Jiao, H. Sun, Y.
Liang, H. Dai, J. Am. Chem. Soc. 2018, 140, 1715-1724; gG. Hong, S. Diao,
A. L. Antaris, H. Dai, Chem. Rev. 2015, 115, 10816-10906; hG. Hong, Y. Zou,
A. L. Antaris, S. Diao, D. Wu, K. Cheng, X. Zhang, C. Chen, B. Liu, Y. He, J.
Z. Wu, J. Yuan, B. Zhang, Z. Tao, C. Fukunaga, H. Dai, Nat. Commun. 2014,
5, 4206; iB. Li, L. Lu, M. Zhao, Z. Lei, F. Zhang, Angew. Chem. Int. Ed. 2018,
5
7, 7483-7487; jR. Tian, H. Ma, Q. Yang, H. Wan, S. Zhu, S. Chandra, H. Sun,
D. O. Kiesewetter, G. Niu, Y. Liang, X. Chen, Chem. Sci. 2019, 10, 326-332;
kS. He, J. Song, J. Qu, Z. Cheng, Chem. Soc. Rev. 2018, 47, 4258-4278; lY.
Fan, P. Wang, Y. Lu, R. Wang, L. Zhou, X. Zheng, X. Li, J. A. Piper, F. Zhang,
Nat. Nanotechnol. 2018, 13, 941-946; mF. Ding, Y. Fan, Y. Sun, F. Zhang,
Adv. Mater. 2019, 8, 1900260; nZ. Lei, C. Sun, P. Pei, S. Wang, D. Li, X.
Zhang, F. Zhang, Angew. Chem. Int. Ed. 2019, 58, 8166-8171; oC. Sun, B. Li,
M. Zhao, S. Wang, Z. Lei, L. Lu, H. Zhang, L. Feng, C. Dou, D. Yin, H. Xu, Y.
Cheng, F. Zhang, J. Am. Chem. Soc. 2019, 141, 19221-19225; pJ. Li, K. Pu,
Chem. Soc. Rev. 2019, 48, 38-71; qJ. Cao, B. Zhu, K. Zheng, S. He, L. Meng,
J. Song, H. Yang, Front. Bioeng. Biotechnol. 2020, 7, 487.
[
5]
Daranciang, H. Dai, Nat. Nanotechnol. 2009, 4, 773-780.
[6] Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A. L. Antaris, J. Yuan, R.
K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D.
Cui, H. Wan, Y. Zhou, W. Wang, N. F. Huang, J. Luo, Z. Hu, H. Dai, Nat.
Commun. 2017, 8, 737.
[
[
7]
8]
L.-Y. Huang, S. Zhu, R. Cui, M. Zhang, Anal. Chem. 2020, 92, 535-542.
aB. Ding, Y. Xiao, H. Zhou, X. Zhang, C. Qu, F. Xu, Z. Deng, Z. Cheng,
Conclusion
X. Hong, J. Med. Chem. 2019, 62, 2049-2059; bF. Ding, Y. Zhan, X. Lu, Y.
Sun, Chem. Sci. 2018, 9, 4370-4380.
In summary, we have synthesized a new series of NIR-II
fluorescent polymethine-based Pdots with narrow-band and NIR-
II absorption/emission. The substantially higher optical and
colloidal stability of these Pdots in comparison to small organic
dyes and dye-doped lipid nanoparticles were demonstrated. In
vivo non-invasive fluorescence imaging in mice with Pttc-SeBTa-
NIR1125 (traditional NIR-II window) and Pttc-SeBTa-NIR1380
[9]
Sun, Y.-H. Chan, D. T. Chiu, Adv. Mater. 2012, 24, 3498-3504.
10] S. Zhu, B. C. Yung, S. Chandra, G. Niu, A. L. Antaris, X. Chen,
Theranostics 2018, 8, 4141-4151.
11] P. Sun, Q. Wu, X. Sun, H. Miao, W. Deng, W. Zhang, Q. Fan, W.
Huang, Chem. Commun. 2018, 54, 13395-13398.
12] aC. Wu, D. T. Chiu, Angew.Chem. Int. Ed. 2013, 52, 3086-3109; bY.-H.
Chan, P.-J. Wu, Part. Part. Syst. Charact. 2015, 32, 11-28; cK. Li, B. Liu,
Chem. Soc. Rev. 2014, 43, 6570-6597; dK. Pu, A. J. Shuhendler, J. V.
Jokerst, J. Mei, S. S. Gambhir, Z. Bao, J. Rao, Nat. Nanotechnol. 2014, 9,
233-239; eK. Pu, N. Chattopadhyay, J. Rao, J. Control. Release 2016, 240,
J. Yu, C. Wu, X. Zhang, F. Ye, M. E. Gallina, Y. Rong, I.-C. Wu, W.
[
[
[
(NIR-IIb window) was performed and their spatial resolution and
3
12-322; fX. Lim, Nature 2016, 531, 26-28; gL. Feng, C. Zhu, H. Yuan, L. Liu,
SBR were then compared, revealing the superior advantages of
NIR-IIb imaging. Noteworthily, this platform is universal and can
be readily adapted for versatile NIR-II fluorescent monomer to
circumvent the intrinsic energy gap law of conjugated polymers.
We believe this work will provide a footstone for future inspiration
in refining current biological imaging technologies.
F. Lv, S. Wang, Chem. Soc. Rev. 2013, 43, 6620-6633; hQ. Miao, C. Xie, X.
Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu, Nat. Biotechnol. 2017, 35,
1102-1110; iJ. Yu, Y. Rong, C.-T. Kuo, X.-H. Zhou, D. T. Chiu, Anal. Chem.
2
4
Interfaces 2018, 10, 20884-20896; lF. Ye, C. Wu, Y. Jin, Y.-H. Chan, X.
Zhang, D. T. Chiu, J. Am. Chem. Soc. 2011, 133, 8146-8149; mY. Rong, C.
W. J. Yu, X. Zhang, F. Ye, M. Zeigler, M. E. Gallina, I.-C. Wu, Y. Zhang, Y.-H.
Chan, W. Sun, K. Uvdal, D. T. Chiu, ACS Nano 2013, 7, 376-384; nS.-Y. Kuo,
H.-H. Li, P.-J. Wu, C.-P. Chen, Y.-C. Huang, Y.-H. Chan, Anal. Chem. 2015,
017, 89, 42-56; jH.-S. Peng, D. T. Chiu, Chem. Soc. Rev. 2015, 44, 4699-
722; kY. Guo, Y. Li, Y. Yang, S. Tang, Y. Zhang, L. Xiong, ACS Appl. Mater.
8
7, 4765-4771; oC.-T. Kuo, A. M. Thompson, M. E. Gallina, F. Ye, E. S.
Acknowledgements
Johnson, W. Sun, M. Zhao, J. Yu, I.-C. Wu, B. Fujimoto, C. C. DuFort, M. A.
Carlson, S. R. Hingorani, A. L. Paguirigan, J. P. Radich, D. T. Chiu, Nat.
Commun. 2016, 7, 11468; pK. Sun, Y. Tang, Q. Li, S. Yin, W. Qin, J. Yu, D. T.
Chiu, Y. Liu, Z. Yuan, X. Zhang, C. Wu, ACS Nano 2016, 10, 6769-6781; qK.
Chang, Z. Liu, X. Fang, H. Chen, X. Men, Y. Yuan, K. Sun, X. Zhang, Z. Yuan,
C. Wu, Nano Lett. 2017, 17, 4323-4329; rL. Wu, I.-C. Wu, C. C. DuFort, M. A.
We would like to thank the MOST, Taiwan (grant No. 105-2113-
M-110-012-MY3) and the Center for Emergent Functional Matter
Science of National Chiao Tung University from The Featured
6
This article is protected by copyright. All rights reserved.