M.V. Silber et al. / Phytochemistry 69 (2008) 2449–2456
2455
Ehlting, J., Büttner, D., Wang, Q., Douglas, C.J., Somssich, I.E., Kombrink, E., 1999.
Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two
evolutionary classes in angiosperms. Plant J. 19, 9–20.
Ehlting, J., Hamberger, B., Million-Rousseau, R., Werck-Reichhart, D., 2006.
Cytochromes P450 in phenolic metabolism. Phytochem. Rev. 5, 239–270.
Felsenstein, J., 1989. PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics
5, 164–166.
Gross, G.G., Zenk, M.H., 1966. Darstellung und Eigenschaften von Coenzym A-
Thiolestern substituierter Zimtsäuren. Z. Naturforsch. 21b, 683–690.
Hall, T.A., 1999. BioEdit. A user-friendly biological sequence alignment and analysis
program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41, 95–98.
Hamberger, B., Hahlbrock, K., 2004. The 4-coumarate:CoA ligase gene family in
Arabidopsis thaliana comprises one rare, sinapate-activating and three
commonly occurring isoenzymes. Proc. Natl. Acad. Sci. USA 101, 2209–2214.
Hu, W.-J., Kawaoka, A., Tsai, C.-J., Lung, J., Osakabe, K., Ebinuma, H., Chiang, V.L.,
1998. Compartmentalized expression of two structurally and functionally
distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides). Proc. Natl.
Acad. Sci. USA 95, 5407–5412.
Jiang, C., Schommer, C.K., Kim, S.Y., Suh, D.-Y., 2006. Cloning and characterization of
chalcone synthase from the moss, Physcomitrella patens. Phytochemistry 67,
2531–2540.
Jost, W., Baur, A., Nick, P., Reski, R., Gorr, G., 2004. A large plant beta-tubulin family
with minimal C-terminal variation but differences in expression. Gene 340,
151–160.
Kaneko, M., Ohnishi, Y., Horinouchi, S., 2003. Cinnamate:coenzyme A ligase from
the filamentous bacterium Streptomyces coelicolor A3(2). J. Bacteriol. 185, 20–
27.
Knobloch, K.H., Hahlbrock, K., 1975. Isoenzymes of p-coumarate:CoA ligase from
cell suspension cultures of Glycine max. Eur. J. Biochem. 52, 311–320.
Bank accession nos. for amino acid sequences analyzed in addition
to those from P. patens were: U18675 (At4CL1, Arabidopsis thali-
ana), AF106086 (At4CL2, A. thaliana), AF106088 (At4CL3, A. thali-
ana), AAM19949 (At4CL4, A. thaliana), AF279267 (Gm4CL1,
Glycine max), AF002259 (Gm4CL2, G. max), AF002258 (Gm4CL3, G.
max), X69955 (Gm4CL4, G. max), D49366 (Le4CL1, Lithospermum
erythrorhizon), D49367 (Le4CL2, L. erythrorhizon), AF052221
(Lp4CL1, Lolium perenne), AF052222 (Lp4CL2, L. perenne),
AF052223 (Lp4CL3, L. perenne), D43773 (Nt4CL, Nicotiana tabacum),
U50845 (Nt4CL1, N. tabacum), U50846 (Nt4CL2, N. tabacum),
X52623 (Os4CL1, Oryza sativa), L43362 (Os4CL2, O. sativa),
X13324 (Pc4CL1, Petroselinum crispum), X13325 (Pc4CL2, P.
crispum), U12012 (Pt4CL1, Pinus taeda), U12013 (Pt4CL2, P. taeda),
AF008184 (Poph4CL1, Populus hybrida), AF008183 (Poph4CL2, P.
hybrida), AF041049 (Popt4CL1, Populus tremuloides), AF041050
(Popt4CL2, P. tremuloides), AF239687 (Ri4CL1, Rubus idaeus),
AF239686 (Ri4CL2, R. idaeus), AF239685 (Ri4CL3, R. idaeus),
M62755 (St4CL1, Solanum tuberosum), AF150686 (St4CL2, S. tubero-
sum), AL939119 (ScCCL, Streptomyces coelicolor A3(2)).
Amino acid sequences were aligned using Clustal W under man-
ual control as implemented in BioEdit (Hall, 1999). The resulting
data matrix was subsequently analyzed using PAUP version 4.0
(Swofford, 1998) as reported earlier (Lindermayr et al., 2002).
Bayesian analysis (Ronquist and Huelsenbeck, 2003) was per-
formed using two analyses of 10,000,000 generations each and
sampling trees every 1000 generations, a ‘‘burn-in” of 25%, and
equal state frequencies and mutation rates. The 50% majority rule
consensus tree was in accordance to the maximum parsimony
analysis. The topology is shown in Fig. 4, indicating posterior prob-
ability values (Bayes) and bootstrap values (PAUP), respectively.
Similarity analysis between Pp4CL sequences was performed
employing the protein sequence parsimony method protpars using
Koo, A.J.K., Chung, H.S., Kobayashi, Y., Howe, G.A., 2006. Identification of
a
peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic
acid in Arabidopsis. J. Biol. Chem. 281, 33511–33520.
Kumar, A., Ellis, B.E., 2003. 4-Coumarate:CoA ligase gene family in Rubus idaeus:
cDNA structures, evolution, and expression. Plant Mol. Biol. 31, 327–340.
Lang, D., Eisinger, J., Reski, R., Rensing, S., 2005. Representation and high-quality
annotation of the Phycomitrella patens transcriptome demonstrates
a high
proportion of proteins involved in metabolism in mosses. Plant Biol. 7, 238–250.
Lee, D., Douglas, C.J., 1996. Two divergent members of a tobacco 4-coumarate:CoA
ligase (4CL) gene family. Plant Physiol. 112, 193–205.
Lindermayr, C., Möllers, B., Fliegmann, J., Uhlmann, A., Lottspeich, F., Meimberg, H.,
Ebel, J., 2002. Divergent members of
a soybean (Glycine max L.) 4-
coumarate:coenzyme A ligase gene family. Eur. J. Biochem. 269, 1304–1315.
Lindermayr, C., Fliegmann, J., Ebel, J., 2003. Deletion of a single amino acid residue
from different 4-coumarate:CoA ligases from soybean results in the generation
of new substrate specificities. J. Biol. Chem. 278, 2781–2786.
Lozoya, E., Hoffmann, H., Douglas, C.J., Schulz, W., Scheel, D., Hahlbrock, K., 1988.
Primary structures and catalytic properties of isoenzymes encoded by two 4-
coumarate:CoA ligase genes in parsley. Eur. J. Biochem. 176, 661–667.
Markham, K.R., 1988. Distribution of flavonoids in the lower plants and its
evolutionary significance. In: Harborne, J.B. (Ed.), The Flavonoids. Chapman
and Hall, London, pp. 427–468.
Nishiyama, T., Fujita, T., Shin-I, T., Seki, M., Nishide, H., Uchiyama, I., Kamiya, A.,
Carninci, P., Hayashizaki, Y., Shinozaki, K., Kohara, Y., Hasebe, M., 2003.
Comparative genomics of Physcomitrella patens gametophytic transcriptome
and Arabidopsis thaliana: implication for land plant evolution. Proc. Natl. Acad.
Sci. USA 100, 8007–8012.
Acknowledgements
The Physcomitrella BAC library was constructed at Southern Illi-
nois University (SIU), USA by Khalid Meksem for the Leeds Univer-
sity/Washington University Physcomitrella EST program (PEP). We
thank PEP and SIU for providing EST and BAC samples. This work
was supported by the Deutsche Forschungsgemeinschaft within
the priority program 1152 ‘‘Evolution of Metabolic Diversity”
(Grants EB 62/15-1 and EB 62/15-2).
Ragg, H., Kuhn, D.N., Hahlbrock, K., 1981. Coordinated regulation of 4-
coumarate:CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured
plant cells. J. Biol. Chem. 256, 10061–10065.
Rensing, S.A., Ick, J., Fawcett, J.A., Lang, D., Zimmer, A., Van de Peer, Y., Reski, R.,
2007. An ancient genome duplication contributed to the abundance of
metabolic genes in the moss Physcomitrella patens. BMC Evol. Biol. 7, 130.
Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H., Nishiyama,
T., Perroud, P.-F., Lindquist, E.A., Kamisugi, Y., Tanahashi, T., Sakakibara, K.,
Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S.,
Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton,
N., Barbazuk, W.B., Barker, E., Bennetzen, J.L., Blankenship, R., Hyun Cho, S.,
Dutcher, S.K., Estelle, M., Fawcett, J.A., Gundlach, H., Hanada, K., Heyl, A., Hicks,
K.A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D.R.,
Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P.J., Sanderfoot, A.,
Schween, G., Shiu, S.-H., Stueber, K., Theodoulou, F.L., Tu, H., Van de Peer, Y.,
Verrier, P.J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A.C., Hasebe, M.,
Lucas, S., Mishler, B.D., Reski, R., Grigoriev, I.V., Quatrano, R.S., Boore, J.L., 2008.
The Physcomitrella genome reveals evolutionary insights into the conquest of
land by plants. Science 319, 64–69.
Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 19, 1572–1574.
Sanger, F., Nicklen, S., Coulson, A.R., 1977. DNA sequencing with chain-terminating
inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.
Schaefer, D.G., Zrÿd, J.-P., 2001. The moss Physcomitrella patens, now and then. Plant
Physiol. 127, 1430–1438.
Schneider, K., Hövel, K., Witzel, K., Hamberger, B., Schomburg, D., Kombrink, E.,
Stuible, H.-P., 2003. The substrate specificity-determining amino acid code of 4-
coumarate:CoA ligase. Proc. Natl. Acad. Sci. USA 100, 8601–8606.
References
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.,
1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25, 3389–3402.
Asakawa, Y., 2001. Recent advances in phytochemistry of bryophytes-acetogenins,
terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand,
Argentinean and European liverworts. Phytochemistry 56, 297–312.
Ashton, N.W., Grimsley, N.H., Cove, D.J., 1979. Analysis of gametophytic
development in the moss, Physcomitrella patens, using auxin and cytokinin
resistant mutants. Planta 144, 427–435.
Becker-Andre, M., Schulze-Lefert, P., Hahlbrock, K., 1991. Structural comparison,
modes of expression, and putative cis-acting elements of the two 4-
coumarate:CoA ligase genes in potato. J. Biol. Chem. 266, 8551–8559.
Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B., Lewis, N.G., 2003.
An in silico assessment of gene function and organization of the
phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and
limitations thereof. Phytochemistry 64, 1097–1112.
Costa, M.A., Bedgar, D.L., Moinuddin, S.G.A., Kim, K.-W., Cardenas, C.L., Cochrane,
F.C., Shockey, J.M., Helms, G.L., Amakura, Y., Takahashi, H., Milhollan, J.K., Davin,
L.B., Browse, J., Lewis, N.G., 2005. Characterization in vitro and in vivo of the
putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl
lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66,
2072–2091.
Schneider, K., Kienow, L., Schmelzer, E., Colby, T., Bartsch, M., Miersch, O.,
Wasternack, C., Kombrink, E., Stuible, H.-P., 2005. A new type of peroxisomal
Doyle, J., Doyle, L., 1990. Isolation of plant DNA from fresh tissue. Focus 12,
13–15.