Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
the potential role of the metal catalyst for bond activation,
condensation followed by construction of new bonds for
imidazole synthesis (Scheme 3c).
Ford, Acc. Chem. Res., 2014, 47, 1503.
5. (a) G. E. Dobereiner and R. H. CrabtDreOeI:,1C0h.1e0m39./CR9eCvC.,022301190D,
110, 681; (b) A. J. A. Watson and J. M. J. Williams, Science,
2010, 329, 635; (c) J. Moran and M. J. Krische, Pure Appl.
Chem., 2012, 84, 1729.
On the basis of the initial mechanistic studies and control
experiments, we hereby postulated a probable catalytic
pathway for the Ni-catalysed dehydrogenative condensation of
aromatic diamines with alcohols (Scheme 3e).8a Initially, Ni-
catalysed dehydrogenation of primary alcohol gave aldehyde 2’
followed by condensation with 1a to imine intermediate A,
which subsequently undergoes cyclisation and dehydro-
genation to product 4 via intermediate B. It is noteworthy to
mention that, in the GC-MS analysis of the crude reaction
mixture we detected intermediate 2’ as well as intermediate A.
Another possibility is that, intermediate B could couple with 2’
to intermediate C, which subsequently undergoes intra-
molecular cyclisation and rearrange to 1,2-disubstituted
imidazoles (Scheme 3e). Nevertheless, to exclude the possibility
of N-alkylation of 2-arylimidazoles, 4k was allowed to react with
benzyl alcohol under standard conditions and we did not
observed any desired product (Scheme 3d). Moreover, during
optimization studies we detected intermediate C in the GC-MS
analysis, which support our hypotheses for 1,2-disubstituted
imidazoles synthesis. Notably, the overall process released only
water and dihydrogen as side products, rendering it sustainable.
Thereafter, we measured the quantitative evaluation of
hydrogen gas for the process and confirmed through gas
chromatography (SI, Scheme S4-S5).
In conclusion, herein we demonstrated the first Ni-catalysed
selective dehydrogenative condensation of aromatic diamines
with a series of primary alcohols to substituted benzimi-dazoles.
A simple and inexpensive Ni-catalyst and 1,10-phenthroline
ligand enables to a vareity of functionalised benzimidazoles and
quinoxalines in up to 91% yield. The catalytic system is tollerant
to alkyl, alkoxy, halides, trifluoromethyl as well as heterocyclic
rings including unsaturated alcohols. Initial mechanistic
investigations involving defined Ni-catalyst, deuterium labeling
experiments as well as quantitative determination of hydrogen
gas were performed to establish the dehydrogenation process.
6. (a) T. Kondo, S. Yang, K. Huh, M. Kobayashi, S. Kotachi and Y.
Watanabe, Chem. Lett., 1991, 20, 1275; (b) L. Li, Q. Luo, H.
Cui, R. Li, J. Zhang and T. Peng, ChemCatChem, 2018, 10,
1607; (c) T. Hille, T. Irrgang and R. Kempe, Chem.-Eur. J.,
2014, 20, 5569; (d) A. K. Sharma, H. Joshi, R. Bhaskar and A.
K. Singh, Dalton Trans., 2017, 46, 2228; (e) K. Tateyama, K.
Wada, H. Miura, S. Hosokawa, R. Abe and M. Inoue, Catal.
Sci. Technol., 2016, 6, 1677; (f) K. J. Won, H. Jinling, Y.
Kazuya and M. Noritaka, Chem. Lett., 2009, 38, 920; (g) Z.
Xu, X. Yu, X. Sang, and D. Wang, Green Chem., 2018, 20,
2571; (h) K. Tateyama, K. Wada, H. Miura, S. Hosokawa, R.
Abe and M. Inoue, Catal. Sci. Technol., 2016, 6, 1677.
7. (a) R. M. Bullock, Catalysis Without Precious Metals, Eds.:
Wiley-VCH, Weinheim, 2010; (b) B. Su, Z.-C. Cao and Z.-J. Shi,
Acc. Chem. Res., 2015, 48, 886.
8. (a) Z. Xu, D.-S. Wang, X. Yu, Y. Yang and D. Wang, Adv. Synth.
Catal., 2017, 359, 3332; (b) P. Daw, Y. Ben-David and D.
Milstein, ACS Catal., 2017, 7, 7456; (c) K. Das, A. Mondal,
and D. Srimani, J. Org. Chem., 2018, 83, 9553; (d) A. J.
Blacker, M. M. Farah, M. I. Hall, S. P. Marsden, O. Saidi and
J. M. J. Williams, Org. Lett., 2009, 11, 2039.
9. For selected reviews, see: (a) S. Z. Tasker, E. A. Standley, T. F.
Jamison, Nature, 2014, 509, 299; (b) A. Valentine and P.
Ananikov, ACS Catal., 2015, 5, 1964; (c) J. E. Dander and N.
K. Garg, ACS Catal., 2017, 7, 1413 and references cited
therein; (d) F. Alonso, P. Riente and M. Yus, Acc. Chem. Res.,
2011, 44, 379.
10. (a) M. Vellakkaran, K. Singh and D. Banerjee, ACS Catal.,
2017, 7, 8152; (b) K. Singh, M. Vellakkaran and D. Banerjee,
Green Chem., 2018, 20, 2250; (c) J. Das, K. Singh, M.
Vellakkaran and D. Banerjee, Org. Lett., 2018, 20,
5587−5591; (d) K. Singh, L. M. Kabadwal, S. Bera, A.
Alanthadka and D. Banerjee, J. Org. Chem., 2018, 83,
15406.
11. For quinoxaline synthesis, see: (a) F. Xie, M. Zhang, H. Jiang,
M. Chen, W. Lv, A. Zheng and X. Jian, Green Chem., 2015,
17, 279; (b) M. J. Climent, A. Corma, J. C. Hernández, A. B.
Hungría, S. Iborra and S. Martínez-Silvestre, J. Catal., 2012,
292, 118; (c) C. S. Cho and S. G. Oh, Tetrahedron Lett., 2006,
47, 5633; (d) D.-Q. Shi and G.-L. Dou, Synth. Commun.,
2008, 38, 3329; (e) T. Hille, T. Irrgang and R. Kempe, Chem.-
Eur. J., 2014, 20, 5569; (f) P. Daw, A. Kumar, N. A. Espinosa-
Jalapa, Y. Diskin-Posner, Y. Ben-David and D. Milstein, ACS
Catal., 2018, 8, 7734; (g) M. Mastalir, M. Glatz, E.
Pittenauer, G. Allmaier, and K. Kirchner, Org. Lett., 2019,
21, 1116.
Conflicts of interest
There are no conflicts to declare.
The authors thank SERB, India (ECR/2015/000600) and IIT Roorkee
(SMILE-32). M. S. Thank. DST/2018/IF180079 for financial support. A.
B. and K. S. thank IIT-R for a fellowship.
Notes and references
1. (a) D. A. Horton, G. T. Bourne and M. L. Smythe, Chem. Rev.,
2003, 103, 893; (b) Z. Lixin and L. D. Arnold, Natural
Products: Drug Discovery and Therapeutic Medicine;
Humana Press: Totowa, NJ, 2005; p 341; (c) R. Sarges, H. R.
Howard, R. G. Browne, L. A. Lebel, P. A. Seymour and B. K.
Koe, J. Med. Chem., 1990, 33, 2240.
2. (a) H. M. Smith, High Performance Pigments; Wiley−VCH
Verlag GmbH & Co. KGaA: Weinheim, Germany, 2002; pp
135; (b) Scherer, G. G. Fuel Cells II; Springer-Verlag: Berlin,
2008; pp 65.
3. (a) E. C. Wagner and W. H. Millett, Org. Synth., 1939, 19, 12;
(b) J. B. Wright, Chem. Rev., 1951, 48, 397; (c) P. N. Preston,
Chem. Rev., 1974, 74, 279; (d) K. J. Lee and K. D. Janda, Can.
J. Chem., 2001, 79, 1556; (e) M. Curini, F. Epifano, F.
Montanari, O. Rosati and S. Taccone, Synlett, 2004, 1832; (f)
K. Bahrami, M. M. Khodaei and I. Kavianinia, Synthesis,
2007, 2007, 547.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins