Journal of the American Chemical Society
Communication
halide-iron(iv)-oxo compounds. Chem. Commun. 2014, 50, 10887−
(32) Ogo, S.; Wada, S.; Watanabe, Y.; Iwase, M.; Wada, A.; Harata,
M.; Jitsukawa, K.; Masuda, H.; Einaga, H. Synthesis, Structure, and
1
0890.
(
16) Rana, S.; Biswas, J. P.; Sen, A.; Clem
́
ancey, M.; Blondin, G.;
Spectroscopic Properties of [FeIII(tnpa)(OH)(PhCOO)]ClO : A
4
Latour, J.-M.; Rajaraman, G.; Maiti, D. Selective C−H halogenation
Model Complex for an Active Form of Soybean Lipoxygenase-1.
Angew. Chem., Int. Ed. 1998, 37, 2102−2104.
over hydroxylation by non-heme iron(iv)-oxo. Chem. Sci. 2018, 9,
7
(
843−7858.
17) Rana, S.; Bag, S.; Patra, T.; Maiti, D. Catalytic Electrophilic
(33) Ogo, S.; Yamahara, R.; Roach, M.; Suenobu, T.; Aki, M.;
Ogura, T.; Kitagawa, T.; Masuda, H.; Fukuzumi, S.; Watanabe, Y.
III
Halogenations and Haloalkoxylations by Non-Heme Iron Halides.
Structural and Spectroscopic Features of a cis (Hydroxo)-Fe -
Adv. Synth. Catal. 2014, 356, 2453−2458.
(Carboxylato) Configuration as an Active Site Model for Lip-
(
18) Chatterjee, S.; Paine, T. K. Hydroxylation versus Halogenation
oxygenases. Inorg. Chem. 2002, 41, 5513−5520.
of Aliphatic C−H Bonds by a Dioxygen-Derived Iron−Oxygen
Oxidant: Functional Mimicking of Iron Halogenases. Angew. Chem.,
Int. Ed. 2016, 55, 7717−7722.
(34) MacBeth, C. E.; Golombek, A. P.; Young, V. G.; Yang, C.;
Kuczera, K.; Hendrich, M. P.; Borovik, A. S. Activation by Nonheme
Iron Complexes: A Monomeric Fe(III)-Oxo Complex Derived From
(
19) Tamanaha, E.; Zhang, B.; Guo, Y.; Chang, W. C.; Barr, E. W.;
O . Science 2000, 289, 938.
2
Xing, G.; St. Clair, J.; Ye, S.; Neese, F.; Bollinger, J. M., Jr.; Krebs, C.
Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of
Aspergillus nidulans Isopenicillin N Synthase. J. Am. Chem. Soc. 2016,
(35) Çelenligil-Çetin, R.; Paraskevopoulou, P.; Dinda, R.; Staples, R.
J.; Sinn, E.; Rath, N. P.; Stavropoulos, P. Synthesis, Characterization,
and Reactivity of Iron Trisamidoamine Complexes That Undergo
Both Metal- and Ligand-Centered Oxidative Transformations. Inorg.
Chem. 2008, 47, 1165−1172.
1
(
38, 8862−8874.
20) Ge, W.; Clifton, I. J.; Stok, J. E.; Adlington, R. M.; Baldwin, J.
E.; Rutledge, P. J. Isopenicillin N Synthase Mediates Thiolate
Oxidation to Sulfenate in a Depsipeptide Substrate Analogue:
Implications for Oxygen Binding and a Link to Nitrile Hydratase? J.
Am. Chem. Soc. 2008, 130, 10096−10102.
(36) Soo, H. S.; Komor, A. C.; Iavarone, A. T.; Chang, C. J. A
Hydrogen-Bond Facilitated Cycle for Oxygen Reduction by an Acid-
and Base-Compatible Iron Platform. Inorg. Chem. 2009, 48, 10024−
1
(
0035.
(
21) Kawatsu, T.; Lundberg, M.; Morokuma, K. Protein Free Energy
37) Cook, S. A.; Ziller, J. W.; Borovik, A. S. Iron(II) Complexes
Corrections in ONIOM QM:MM Modeling: A Case Study for
Isopenicillin N Synthase (IPNS). J. Chem. Theory Comput. 2011, 7,
Supported by Sulfonamido Tripodal Ligands: Endogenous versus
Exogenous Substrate Oxidation. Inorg. Chem. 2014, 53, 11029−
3
90−401.
22) Gordon, J. B.; Vilbert, A. C.; Siegler, M. A.; Lancaster, K. M.;
Moenne-Loccoz, P.; Goldberg, D. P. A Nonheme Thiolate-Ligated
1
(
1035.
(
38) Kleinlein, C.; Bendelsmith, A. J.; Zheng, S.-L.; Betley, T. A. C−
̈
H Activation from Iron(II)-Nitroxido Complexes. Angew. Chem., Int.
Ed. 2017, 56, 12197−12201.
(
Cobalt Superoxo Complex: Synthesis and Spectroscopic Character-
ization, Computational Studies, and Hydrogen Atom Abstraction
Reactivity. J. Am. Chem. Soc. 2019, 141, 3641−53.
39) Chambers, M. B.; Groysman, S.; Villagran, D.; Nocera, D. G.
́
Iron in a Trigonal Tris(alkoxide) Ligand Environment. Inorg. Chem.
013, 52, 3159−3169.
40) Mukherjee, J.; Lucas, R. L.; Zart, M. K.; Powell, D. R.; Day, V.
(
23) Badiei, Y. M.; Siegler, M. A.; Goldberg, D. P. O activation by
2
2
(
bis(imino)pyridine iron(II)-thiolate complexes. J. Am. Chem. Soc.
011, 133, 1274−7.
24) Gordon, J. B.; McGale, J. P.; Prendergast, J. R.; Shirani-
2
(
W.; Borovik, A. S. Synthesis, Structure, and Physical Properties for a
Series of Monomeric Iron(III) Hydroxo Complexes with Varying
Hydrogen-Bond Networks. Inorg. Chem. 2008, 47, 5780−5786.
Sarmazeh, Z.; Siegler, M. A.; Jameson, G. N. L.; Goldberg, D. P.
Structures, Spectroscopic Properties, and Dioxygen Reactivity of 5-
and 6-Coordinate Nonheme Iron(II) Complexes: A Combined
Enzyme/Model Study of Thiol Dioxygenases. J. Am. Chem. Soc.
(41) Berreau, L. M.; Allred, R. A.; Makowska-Grzyska, M. M.; Arif,
A. M. Synthesis and structure of a nitrogen/sulfur-ligated zinc
hydroxide complex. Chem. Commun. 2000, 1423−1424.
2
(
018, 140, 14807−14822.
(42) Ford, C. L.; Park, Y. J.; Matson, E. M.; Gordon, Z.; Fout, A. R.
25) McQuilken, A. C.; Jiang, Y.; Siegler, M. A.; Goldberg, D. P.
A bioinspired iron catalyst for nitrate and perchlorate reduction.
Addition of Dioxygen to an N4S(thiolate) Iron(II) Cysteine
Dioxygenase Model Gives a Structurally Characterized Sulfinato−
Iron(II) Complex. J. Am. Chem. Soc. 2012, 134, 8758−8761.
Science 2016, 354, 741−43.
(43) Gordon, Z.; Drummond, M. J.; Matson, E. M.; Bogart, J. A.;
Schelter, E. J.; Lord, R. L.; Fout, A. R. Tuning the Fe(II/III) Redox
Potential in Nonheme Fe(II)−Hydroxo Complexes through Primary
and Secondary Coordination Sphere Modifications. Inorg. Chem.
(
26) Jiang, Y.; Widger, L. R.; Kasper, G. D.; Siegler, M. A.; Goldberg,
D. P. Iron(II)-Thiolate S-Oxygenation by O : Synthetic Models of
2
Cysteine Dioxygenase. J. Am. Chem. Soc. 2010, 132, 12214−12215.
2
(
017, 56, 4852−4863.
(
27) Zaragoza, J. P. T.; Yosca, T. H.; Siegler, M. A.; Moenne-Loccoz,
̈
44) Dahl, E. W.; Dong, H. T.; Szymczak, N. K. Phenylamino
P.; Green, M. T.; Goldberg, D. P. Direct Observation of Oxygen
derivatives of tris(2-pyridylmethyl)amine: hydrogen-bonded perox-
Rebound with an Iron-Hydroxide Complex. J. Am. Chem. Soc. 2017,
odicopper complexes. Chem. Commun. 2018, 54, 892−895.
1
(
39, 13640−13643.
(45) Dahl, E. W.; Kiernicki, J. J.; Zeller, M.; Szymczak, N. K.
28) Pangia, T. M.; Davies, C. G.; Prendergast, J. R.; Gordon, J. B.;
Hydrogen Bonds Dictate O Capture and Release within a Zinc
Siegler, M. A.; Jameson, G. N. L.; Goldberg, D. P. Observation of
Radical Rebound in a Mononuclear Nonheme Iron Model Complex.
J. Am. Chem. Soc. 2018, 140, 4191−4194.
2
Tripod. J. Am. Chem. Soc. 2018, 140, 10075−10079.
(46) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor,
G. C. Synthesis, structure, and spectroscopic properties of copper(II)
compounds containing nitrogen−sulphur donor ligands; the crystal
and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-
yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton
Trans. 1984, 1349−1356.
(
29) While this paper was under review, a report of a nonheme
III
II
Fe (OH) complex reacting with (p-H-C H ) C· to give Fe and
alcohol was described Drummond, M. J.; Ford, C. L.; Gray, D. L.;
6
4 3
Popescu, C. V.; Fout, A. R. J. Am. Chem. Soc. 2019, 141, 6639−6650.
(
30) Brines, L. M.; Coggins, M. K.; Poon, P. C. Y.; Toledo, S.;
Kaminsky, W.; Kirk, M. L.; Kovacs, J. A. Water-Soluble Fe(II)−H O
(47) Mørup, S. Magnetic Relaxation Phenomena. In Mo
Spectroscopy and Transition Metal Chemistry: Fundamentals and
Applications; Gutlich, P., Bill, E., Trautwein, A. X., Eds.; Springer:
̈
ssbauer
2
Complex with a Weak O−H Bond Transfers a Hydrogen Atom via an
Observable Monomeric Fe(III)−OH. J. Am. Chem. Soc. 2015, 137,
̈
2
(
253−2264.
Berlin, Heidelberg, 2011; pp 201−234.
31) Ching, W.-M.; Zhou, A.; Klein, J. E. M. N.; Fan, R.; Knizia, G.;
(48) Gupta, R.; Lacy, D. C.; Bominaar, E. L.; Borovik, A. S.;
Cramer, C. J.; Guo, Y.; Que, L., Jr. Characterization of the Fleeting
Hydroxoiron(III) Complex of the Pentadentate TMC-py Ligand.
Inorg. Chem. 2017, 56, 11129−11140.
Hendrich, M. P. Electron Paramagnetic Resonance and Mossbauer
̈
Spectroscopy and Density Functional Theory Analysis of a High-Spin
IV
Fe −Oxo Complex. J. Am. Chem. Soc. 2012, 134, 9775−9784.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX