Inorganic Chemistry
Article
a crystal−amorphous−crystal transformation. CrystEngComm 2016,
18, 54−61.
(18) Kondo, A.; Satomi, T.; Azuma, K.; Takeda, R.; Maeda, K. New
layered copper 1,3,5-benzenetriphosphonates pillared with N-donor
ligands: their synthesis, crystal structures, and adsorption properties.
Dalton Trans. 2015, 44, 12717−12725.
(19) Cong, M.-H.; Ma, K.-R.; Kan, Y.-H.; Dong, X.-X. Structure,
spectroscopy and DFT studies of a novel one-dimensional CuII-
diphosphonate coordination polymer. J. Iran. Chem. Soc. 2015, 12,
205−211.
(20) Lin, K.-J.; Fu, S.-J.; Cheng, C.-Y.; Chen, W.-H.; Kao, H.-M.
Towards electrochemical artificial muscles: A supramolecular machine
based on a one-dimensional copper-containing organophosphonate
system. Angew. Chem. 2004, 116, 4282−4285.
(21) Du, M.; Li, C.-P.; Liu, C.-S.; Fang, S.-M. Design and
construction of coordination polymers with mixed-ligand synthetic
strategy. Coord. Chem. Rev. 2013, 257, 1282−1305.
(22) Zhu, Y.-P.; Ren, T.-Z.; Yuan, Z.-Y. Insights into mesoporous
metal phosphonate hybrid materials for catalysis. Catal. Sci. Technol.
2015, 5, 4258−4279.
(23) Yang, Y.; Gao, C.-Y.; Tian, H.-R.; Ai, J.; Min, X.; Sun, Z. M. A
highly stable MnII phosphonate as a highly efficient catalyst for CO2
fixation under ambient conditions. Chem. Commun. 2018, 54, 1758−
1761.
(24) Bhanja, P.; Ghosh, K.; Islam, S. S.; Patra, A. K.; Islam, S. M.;
Bhaumik, A. New hybrid iron phosphonate material as an efficient
catalyst for the synthesis of adipic acid in air and water. ACS
Sustainable Chem. Eng. 2016, 4, 7147−7157.
(25) Cai, Z.-S.; Shi, Y.; Bao, S.-S.; Shen, Y.; Xia, X.-H.; Zheng, L.-M.
Bioinspired engineering of cobalt-phosphonate nanosheets for robust
hydrogen evolution reaction. ACS Catal. 2018, 8, 3895−3902.
(26) Saha, J.; Chowdhury, D. R.; Jash, P.; Paul, A. Cobalt
phosphonates as precatalysts for water oxidation: Role of pore size
in catalysis. Chem. - Eur. J. 2017, 23, 12519−12526.
(27) Mendes, R. F.; Antunes, M. M.; Silva, P.; Barbosa, P.;
Figueiredo, F.; Linden, A.; Rocha, J.; Valente, A. A.; Almeida Paz, F.
A. A lamellar coordination polymer with remarkable catalytic activity.
Chem. - Eur. J. 2016, 22, 13136−13146.
(28) Wang, J.; Niu, Y.; Zhang, M.; Ma, P.; Zhang, C.; Niu, J.; Wang,
J. Organophosphonate-functionalized lanthanopolyoxomolybdate:
Synthesis, characterization, magnetism, luminescence, and catalysis
of H2O2-based thioether oxidation. Inorg. Chem. 2018, 57, 1796−
1805.
(29) Wang, J.; Wang, R.; Zi, H.; Wang, H.; Xia, Y.; Liu, X. Porous
organic zirconium phosphonate as efficient catalysts for the catalytic
transfer hydrogenation of ethyl levulinate to γ-valerolactone without
external hydrogen. J. Chin. Chem. Soc. 2018, 65, 750−759.
(30) Chen, X.; Peng, Y.; Han, X.; Liu, Y.; Lin, X.; Cui, Y. Sixteen
isostructural phosphonate metal-organic frameworks with controlled
Lewis acidity and chemical stability for asymmetric catalysis. Nature
Comm. 2017, 8, Article number: 2171.
(31) Fang, W.-H.; Zhang, L.; Zhang, J. Synthetic investigation,
structural analysis and photocatalytic study of a carboxylate−
phosphonate bridged Ti18-oxo cluster. Dalton Trans. 2017, 46,
803−807.
assembled from aminoalcohols and pyromellitic acid: Highly active
precatalysts for the mild water-promoted oxidation of alkanes. Inorg.
Chem. 2016, 55, 125−135.
́
(38) Dias, S. S. P.; Kirillova, M. V.; Andre, V.; Kłak, J.; Kirillov, A. M.
New tetracopper(II) cubane cores driven by a diamino alcohol: Self-
assembly synthesis, structural and topological features, and magnetic
and catalytic oxidation properties. Inorg. Chem. 2015, 54, 5204−5212.
(39) Kirillov, A. M.; Shul’pin, G. B. Pyrazinecarboxylic acid and
analogs: highly efficient co-catalysts in the metal-complex-catalyzed
oxidation of organic compounds. Coord. Chem. Rev. 2013, 257, 732−
754.
(40) Healy, P. C.; Patrick, J. M.; White, A. H. Crystal structure of
Diaqua(1,10-phenanthroline)copper(II) sulfate. Aust. J. Chem. 1984,
37, 1111−1115.
(41) APEX2, Software, V2014.11; Bruker AXS, Inc.: Madison,
Wisconsin, USA, 2014.
(42) SADABS: Program for Empirical Absorption Correction of Area
Detector Data; University of Goettingen: Germany, 2012.
(43) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr.,
Sect. A: Found. Crystallogr. 2008, A64, 112−122.
(44) Blatov, V. A. Multipurpose crystallochemical analysis with the
program package TOPOS. IUCr CompComm Newsletter 2006, 7, 4−
38.
(45) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied
topological analysis of crystal structures with the program package
ToposPro. Cryst. Growth Des. 2014, 14, 3576−3586.
(46) O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal
structures of metal−organic frameworks and related materials into
their underlying nets. Chem. Rev. 2012, 112, 675−702.
(47) Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O. M. Topological analysis
of metal−organic frameworks with polytopic linkers and/or multiple
building units and the minimal transitivity principle. Chem. Rev. 2014,
114, 1343−1370.
(48) Shul’pin, G. B. Metal-catalyzed hydrocarbon oxygenations in
solutions: The dramatic role of additives: a review. J. Mol. Catal. A:
Chem. 2002, 189, 39−66.
(49) Shul’pin, G. B. Hydrocarbon oxygenations with peroxides
catalyzed by metal compounds. Mini-Rev. Org. Chem. 2009, 6, 95−
104.
(50) Ziegler, A.; Landfester, K.; Musyanovych, A. Synthesis of
phosphonate-functionalized polystyrene and poly(methyl methacry-
late) particles and their kinetic behavior in miniemulsion polymer-
ization. Colloid Polym. Sci. 2009, 287, 1261−1271.
̈
(51) Bingol, B.; Meyer, W. H.; Wagner, M.; Wegner, G. Synthesis,
micro-structure, and acidity of poly(vinylphosphonic acid). Macromol.
Rapid Commun. 2006, 27, 1719−1724.
(52) Demadis, K. D.; Lykoudis, P.; Raptis, R. G.; Mezei, G.
Phosphonopolycarboxylates as chemical additives for calcite scale
dissolution and metallic corrosion inhibition based on a calcium−
phosphonotricarboxylate organic−inorganic hybrid. Cryst. Growth
Des. 2006, 6, 1064−1067.
(53) Demadis, K. D.; Panera, A.; Anagnostou, Z.; Varouhas, D.;
Kirillov, A. M.; Cisarova, I. Disruption of “coordination polymer”
architecture in Cu2+ bis-phosphonates and carboxyphosphonates by
use of 2,2’-bipyridine as auxilliary ligand: Structural variability and
topological analysis. Cryst. Growth Des. 2013, 13, 4480−4489.
(54) Demadis, K. D.; Stavgianoudaki, N. Structural diversity in metal
phosphonate frameworks: Impact on applications. In Metal
phosphonate chemistry: From synthesis to applications; Clearfield, A.,
Demadis, K. D., Eds.; Royal Society of Chemistry: London, 2012;
Chapter 14, pp 438−492.
(55) Fidelli, A. M.; Armakola, E.; Demadis, K. D.; Kessler, V. G.;
Escuer, A.; Papaefstathiou, G. S. Cu(II) frameworks from di-2-pyridyl
ketone and benzene-1,3,5-triphosphonic acid. Eur. J. Inorg. Chem.
2018, 2018, 91−98.
(56) Beevers, C. A.; Lipson, H. The crystal structure of copper
sulfate pentahydrate CuSO4·5H2O. Proc. R. Soc. London, Ser. A 1934,
146, 570−582.
(32) Evans, O. R.; Ngo, H. L.; Lin, W. Chiral porous solids based on
lamellar lanthanide phosphonates. J. Am. Chem. Soc. 2001, 123,
10395−10396.
(33) Olah, G. A.; Molnar, A.; Surya Prakash, G. K. Hydrocarbon
chemistry; Wiley: New York, 2017.
(34) Shilov, A. E.; Shul’pin, G. B. Activation and catalytic reactions of
saturated hydrocarbons in the presence of metal complexes; Springer:
Berlin, 2006.
(35) Karlin, K. D., Tyeklar, Z., Eds. Bioinorganic Chemistry of Copper;
Springer: Berlin, 2012.
(36) Itoh, S., Rokita, S., Eds. Copper-Oxygen Chemistry; Wiley: New
York, 2011.
́
(37) Fernandes, T. A.; Santos, C. I. M.; Andre, V.; Kłak, J.; Kirillova,
M. V.; Kirillov, A. M. Copper(II) coordination polymers self-
J
Inorg. Chem. XXXX, XXX, XXX−XXX