Journal of the American Chemical Society
Communication
(7) Holman, K. T.; Pivovar, A. M.; Swift, J. A.; Ward, M. D. Acc.
Chem. Res. 2001, 34, 107−118. Makowski, S. J.; Koestler, P.; Schnick,
W. Chem.Eur. J. 2012, 18, 3248−3257.
H···O1) = 2.585 Å) (Figure 1d, f). Comparative studies of the
crystal structure of HOF-2⊃S-1-PEA show that the interactions
between S-1-PEA molecules and host HOF-2 framework are
much weaker; there only exist close contacts of C−H···O in the
range of 3.284−3.574 Å.) (Figure 1e). To the best of our
knowledge, this is the first example of homochiral porous
HOFs for the enantioselective separation of small molecules.
In summary, we have not only confirmed that 2,4-
diaminotriazinyl (DAT) is a very powerful hydrogen-bonding
motif for the construction of porous robust HOFs, but even
more importantly, we have also demonstrated the first example
of homochiral HOFs for the highly enantioselective separation
of small molecules. Because HOFs have some advantages such
as solution processability and characterization, easy purification,
and straightforward regeneration and reusage by simple
recrystallization over porous MOF materials, some porous
HOF materials might be potentially implemented in industrial
and/or pharmaceutical applications. It is anticipated that the
emerging HOF chemistry will prosper and more functional
porous HOF materials will be targeted for their applications in
gas storage, separation, sensing, and heterogeneous catalysis in
the near future.
(8) Mastalerz, M.; Oppel, I. M. Angew. Chem., Int. Ed. 2012, 51,
5252−5255.
(9) He, Y.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2011, 133, 14570−
14573.
(10) Cooper, A. I. Angew. Chem., Int. Ed. 2012, 51, 7892−7894.
(11) Luo, X.-Z.; Jia, X.-J.; Deng, J.-H.; Zhong, J.-L.; Liu, H.-J.; Wang,
K.-J.; Zhong, D.-C. J. Am. Chem. Soc. 2013, 135, 11684−11687.
(12) Maly, K. E.; Gagnon, E.; Maris, T.; Wuest, J. D. J. Am. Chem.
Soc. 2007, 129, 4306−4322.
(13) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248−
1256.
(14) Pu, L. Acc. Chem. Res. 2012, 45, 150−163.
(15) Wanderley, M. M.; Wang, C.; Wu, C.-D.; Lin, W. J. Am. Chem.
Soc. 2012, 134, 9050−9053.
(16) See SI for the crystal data of HOF-2, HOF-2⊃R-1-PEA, and
HOF-2⊃S-1-PEA.
(17) Li, G.; Yu, W.; Cui, Y. J. Am. Chem. Soc. 2008, 130, 4582−4583.
(18) Das, M. C.; Guo, Q.; He, Y.; Kim, J.; Zhao, C.-G.; Hong, K.;
Xiang, S.; Zhang, Z.; Thomas, K. M.; Krishna, R.; Chen, B. J. Am.
Chem. Soc. 2012, 134, 8703−8710. Suh, K.; Yutkin, M. P.; Dybtsev, D.
N.; Fedin, V. P.; Kim, K. Chem. Commun. 2012, 48, 513−515. Xiang, S.
C.; Zhang, Z. J.; Zhao, C. G.; Hong, K. L.; Zhao, X. B.; Ding, D. R.;
Xie, M. H.; Wu, C. D.; Das, M. C.; Gill, R.; Thomas, K. M.; Chen, B.
L. Nat. Commun. 2011, 2, 204.
ASSOCIATED CONTENT
■
S
* Supporting Information
(19) Liu, Y.; Xuan, W.; Cui, Y. Adv. Mater. 2010, 22, 4112−4135.
(20) Li, G.; Yu, W.; Ni, J.; Liu, T.; Sheng, E.; Cui, Y. Angew. Chem.,
Int. Ed. 2008, 47, 1245−1249.
Crystallographic data, TGA, PXRDs, HPLC plots, isotherm fit
parameters, gas sorption isotherms, and additional figures. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the awards from the Welch
Foundation (AX-1730 for B.C. and AX-1593 for J.C.-G.Z.).
REFERENCES
■
(1) Tian, J.; Thallapally, P. K.; McGrail, B. P. CrystEngComm 2012,
14, 1909−1919.
(2) Mastalerz, M. Chem.Eur. J. 2012, 18, 10082−10091.
(3) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112,
673−674.
(4) Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115−
1124.
(5) (a) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J. Am. Chem.
Soc. 1994, 116, 1151−1152. (b) Gardner, G. B.; Venkataraman, D.;
Moore, J. S.; Lee, S. Nature 1995, 374, 792−795. (c) Kitagawa, S.;
Matsuyama, S.; Munakata, M.; Emori, T. J. Chem. Soc., Dalton Trans.
1991, 2869−2874. (d) Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995,
378, 703−706. (e) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1989,
111, 5962−5964.
(6) (a) Simard, M.; Su, D.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113,
4696−4698. (b) Subramanian, S.; Zaworotko, M. J. J. Chem. Soc.,
Chem. Commun. 1993, 952−954. (c) Venkataraman, D.; Lee, S.;
Zhang, J. S.; Moore, J. S. Nature 1994, 371, 591−593. (d) Wang, X.;
Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1994, 116, 12119−12120.
(e) Endo, K.; Sawaki, T.; Koyanagi, M.; Kobayashi, K.; Masuda, H.;
Aoyama, Y. J. Am. Chem. Soc. 1995, 117, 8341−8352. (f) Brunet, P.;
Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1997, 119, 2737−2738.
549
dx.doi.org/10.1021/ja4129795 | J. Am. Chem. Soc. 2014, 136, 547−549