C. Wen et al. / Journal of Alloys and Compounds 509 (2011) 4583–4587
4587
formed between the Ca Si and CaSi phases. On the other hand, the
2
single Ca5Si3 phase was formed during powder growth, and the
stoichiometry distribution of the Ca5Si3 is homogeneous through-
out the powders. In the calculation, the Ca Si phase has the largest
2
ꢀ
negative ꢀH with the value of −1.4 kcal/g atom at the lowest tem-
perature eutectic point (3.5 at% Si) and the first phase to form in
the Ca–Si system. The proposed phase selection model including
the potential energy and the additional interfacial energy success-
fully explains the experimental results, in which the Ca5Si3 phase
would not form between the Ca Si and CaSi layers.
2
References
[
[
1] Y.L. Gao, C.P. Guo, C.R. Li, Z.M. Du, J. Alloys Compd. 498 (2010) 130.
2] Q. Li, Y.Z. Zhao, Q. Luo, S.L. Chen, J.Y. Zhang, K.C. Chou, J. Alloys Compd. 501
Fig. 5. Silicide formation model of Ca2Si/Ca5Si3/CaSi and Ca2Si/CaSi layer structures,
and the corresponding calculated internal energy of the each phase.
(
2010) 282.
[
[
3] F. Glas, J. Appl. Phys. 108 (2010) 073506.
4] A. Kozlov, J. Gröbner, R. Schmid-Fetzer, J. Alloys Compd. 509 (2011) 3326.
structure, which is not consistent with the previously reported
experimental results.
However, it should be pointed out that another new inter-
face is formed when Ca5Si3 exists, namely, there is one interface
[5] N. Liu, F. Liu, G.C. Yang, Y.Z. Chen, C.L. Yang, Y.H. Zhou, J. Alloys Compd. 467
2009) L11.
6] K. Prasad, D.V. Pinjari, A.B. Pandit, S.T. Mhaske, Ultrason. Sonochem. 17 (2010)
09.
[7] E. Callini, L. Pasquini, L.H. Rude, T.K. Nielsen, T.R. Jensen, E. Bonetti, J. Appl. Phys.
08 (2010) 073513.
8] Z.H. Huang, S.M. Liang, R.S. Chen, E.H. Han, J. Alloys Compd. 468 (2009) 170.
(
[
4
1
for (a) Ca Si/CaSi, and there are two interfaces for the (b)
2
[
Ca Si/Ca5Si /CaSi structures. Actually, it is difficult to calculate the
2
3
[9] M. Ronay, Appl. Phys. Lett. 42 (1983) 577.
interface energy for the Ca silicides. However, it is worthwhile to
refer the typical values of interfacial energy for the reported silicide
[10] R.Y. Zsaur, S.S. Lau, J.W. Mayer, M.-A. Nicolet, Appl. Phys. Lett. 38 (1981) 922.
[
[
11] R. Pretorius, Vacuum 41 (1990) 1038.
12] A. Vantomme, S. Degroote, J. Dekoster, G. Langouche, R. Pretorius, Appl. Phys.
Lett. 74 (1999) 3137.
materials. It has been reported that the TiSi interfaces energies are
2
2
2
9
00 ergs/cm on silicon (1 0 0) and 600 ergs/cm on silicon (1 1 1),
respectively. For ZrSi , the interfaces energy is 800 ergs/cm on
[13] J.W. Mayer, R. Pretorius, J. Appl. Phys. 81 (1997) 2448.
[14] Y. Warashina, Y. Ito, T. Nakamura, H. Tatsuoka, J. Snyder, M. Tanaka, T. Suemasu,
Y. Anma, M. Shimomura, Y. Hayakawa, e-J. Surf. Sci. Nanotechnol. 7 (2009)
2
2
silicon (1 1 1) [29]. Assuming that the interface energy E
is typ-
surf
129.
2
−8
2
ically 800 ergs/cm , namely 1.91 × 10 kcal/cm , the total energy
[15] Y. Imamura, H. Muta, K. Kurosaki, S. Yamanaka, in: C. Uher, Y. Grin, Ballre-
ich, Sugiwara, G. Pastorino, M. Cauchy, M. Udagawa (Eds.), 25th International
Conference on Thermoelectrics, 2006, p. 535.
including the sum of the heat of formation energy and the interfa-
−
7
cial energy are for (a) E
+ Esurf = −1.06 × 10 kcal and for (b)
A2 + C2
[
16] H. Matsui, M. Kuramoto, T. Ono, H. Nose, H. Tatsuoka, H. Kuwabara, J. Cryst.
Growth 237/239 (2002) 2121.
−
8
EB1 + 2 × E
= −8.93 × 10 kcal. The result suggests that the for-
surf
mation of the interface increases the total energy of the structure.
In this calculation, the actual values of the Ca silicide interfaces are
not clear, however, it is certain that the additional interface forma-
tion increases the total energy of the structure, thus a multilayer
structure does not tend to be realized. Thus, it could be concluded
[17] T. Hosono, M. Kuramoto, Y. Matsuzawa, Y. Momose, Y. Maeda, T. Matsuyama,
H. Tatsuoka, Y. Fukuda, S. Hashimoto, H. Kuwabara, Appl. Surf. Sci. 216 (2003)
620.
[
[
18] N. Takagi, Y. Sato, T. Matsuyama, H. Tatsuoka, M. Tanaka, F. Chu, H. Kuwabara,
Appl. Surf. Sci. 244 (2005) 330.
19] T. Inaba, A. Kato, K. Miura, M. Akasaka, T. Iida, Y. Momose, H. Tatsuoka, Thin
Solid Films 515 (2007) 8226.
that the Ca5Si3 would not form between the Ca Si and CaSi layers
2
[20] A. Kato, H. Rikukawa, Phys. Rev. B72 (2005) 041101(R).
[21] M. Heyrman, P. Chartrand, JPEDAV 27 (2006) 220.
when considering the narrower growth window of the Ca5Si3 as
shown in Fig. 1.
[
22] O. Kubaschewski, C.B. Alcock, International Series on Materials Science and
Technology: Metallurgical Thermo-Chemistry, vol. 24, fifth ed., Pergamon
Press, Oxford, 1979, p. 276.
[
[
23] S. Brutti, A. Ciccioli, G. Balducci, G. Gigli, P. Manfrinetti, M. Napoletano, J. Alloys
Compd. 317/318 (2001) 525.
24] J.C. Anglezio, C. Servant, I. Ansara, CALPHAD 3 (1994) 273.
4
. Conclusions
Phase selection during calcium silicide formation was discussed
[25] R. Pretorius, A.M. Vredenberg, F.W. Saris, R. de Reus, J. Appl. Phys. 70 (1991)
3636.
[26] R. Pretorius, T.K. Marais, C.C. Theron, Mater. Sci. Eng. R 10 (1993) 1.
[
[
using the chemical potential and the effective heat of formation
ꢀ
(
ꢀH ) models. The phase selection theory and Ca silicide interface
27] R. Pretorius, Mater. Res. Soc. Symp. Proc. 25 (1984) 15.
28] P. Manfrinetti, M.L. Fornasini, A. Palenzona, Intermetallics 8 (2000) 223.
model are discussed and compared to the experimental results.
Experimentally, for the layered structure, no Ca5Si3 phase was
[29] C.A. Sukow, R.J. Nemanich, J. Mater. Res. 9 (1994) 1214.