dialysate was negligible as determined by atomic absorption
spectroscopy (AAS) (less than a detection limit of 1 ppm).
Moreover, using the diasylate in each stage as the reaction
solvent showed no detectable activity in catalyzing the Suzuki
coupling reaction of 4-bromobenzaldehyde with phenylboronic
acid under over optimized reaction conditions. This successful
dialytic separation of 1a from the aqueous reaction phase is
highly significant, because it will open a new pathway for the
design and set up of membrane type reactors which are
Chem., Int. Ed., 2002, 41, 1290; (c) O. Navarro, R. A. Kelly III and
S. P. Nolan, J. Am. Chem. Soc., 2003, 125, 16194; (d) G. Altenhoff,
R. Goddard, C. W. Lehmann and F. Glorius, J. Am. Chem. Soc.,
2
004, 126, 15195.
6
7
(a) L. Botella and C. Najera, Angew. Chem., Int. Ed., 2002, 41, 179;
(b) R. B. Bedford, C. S. J. Cazin and S. L. Hazelwood, Angew.
Chem., Int. Ed., 2002, 41, 4120.
´
For reviews, see: (a) N. E. Leadbeater and M. Marco, Chem. Rev.,
2
002, 102, 3217; (b) C. A. McNamara, M. J. Dixon and
M. Bradley, Chem. Rev., 2002, 102, 3275; (c) Q.-H. Fan,
Y.-M. Li and A. S. C. Chan, Chem. Rev., 2002, 102, 3385.
1
8
8 (a) M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet and
F.-X. Felpin, Adv. Synth. Catal., 2010, 352, 33; (b) C. Ornelas,
J. Ruiz, L. Salmon and D. Astruc, Adv. Synth. Catal., 2008,
350, 837; (c) Y. Uozumi and Y. M. A. Yamada, Chem. Rec.,
2009, 9, 51; (d) J. Han, Y. Liu and R. Guo, J. Am. Chem. Soc.,
essential and increasingly demanded industrial processes.
To examine a possibility of in situ generating palladium nano-
particles which could act as active catalyst species, a poisoning
9
1
mercury test was performed. To do this, we managed to
establish a new experiment by addition of an excess of mercury
2009, 131, 2060.
D. T. Richens, Chem. Rev., 2005, 105, 1961.
9
(
Hg : Pd; 400 : 1) to the coupling reaction of 3-bromoaceto-
10 (a) H. Yang, X. Han, G. Li and Y. Wang, Green Chem., 2009,
11, 1184; (b) S. Schweizer, J. M. Becht and C. LeDarian, Org. Lett.,
phenone with phenylboronic acid using 1b (0.005 mol%)
under our optimal conditions. Since, the corresponding biaryl
was obtained in excellent yield of 86%, even in the presence of
excess of Hg (Table 1, entries 23 and 24), it is unlikely that Pd
nanoparticles acted as the active catalyst in our protocol at
room temperature.
2
007, 9, 3777.
1
1 (a) B. J. Gallon, R. W. Kojima, R. B. Kaner and P. L. Diaconescu,
Angew. Chem., Int. Ed., 2007, 46, 7251; (b) B. Yuan, Y. Pan, Y. Li,
B. Yin and H. Jiang, Angew. Chem., Int. Ed., 2010, 44, 4054;
(
c) B. Karimi, D. Elhamfar, J. H. Clark and A. J. Hunt,
Chem.–Eur. J., 2010, 16, 8047; (d) J. H. Han, Y. Liu and
R. Guo, J. Am. Chem. Soc., 2009, 131, 2060.
In conclusion,
a novel designed nano-centipede-like
1
2 It has been shown that amphiphilic resin-supported Pd catalyst is
an efficient system for the Suzuki coupling of aryl iodides and
bromides (not aryl chlorides) with arylboronic acids at room
temperature in water; Y. Uozumi, H. Danjo and T. Hayashi,
J. Org. Chem., 1999, 64, 3384.
main-chain NHC-Pd polymer with triethylene glycol legs
was developed, a new water-soluble and yet highly recyclable
composite. This water-soluble organometallic polymer was
found to present high activity in catalyzing the Suzuki–
Miyaura coupling of a variety of aryl halides including activated,
deactivated and hindered substrates to afford the desired
product in high yields under aqueous and homogeneous
reaction conditions. Furthermore, the catalyst shows high
catalytic activity and excellent reusabilities over at least 17
reaction cycles. More importantly, the catalyst can be easily
separated in pure form using a simple dialysis technique
without the need for inefficient filtration methods.
13 (a) A. J. Boydston, K. A. Williams and C. W. Bielawski, J. Am.
Chem. Soc., 2005, 127, 12496; (b) D. M. Khramov, A. J. Boydston
and C. W. Bielawski, Angew. Chem., Int. Ed., 2006, 45, 6186;
(c) A. J. Boydston, D. M. Khramov and C. W. Bielawski,
Tetrahedron Lett., 2006, 47, 5123; (d) D. M. Khramov,
A. J. Boydston and C. W. Bielawski, Org. Lett., 2006, 8, 1831;
(e) A. J. Boydston, J. D. Rice, M. D. Sanderson, O. L. Dykhno and
C. W. Bielawski, Organometallics, 2006, 25, 6087; (f) A. J. Boydston
and C. W. Bielawski, Dalton Trans., 2006, 4073; (g) K. A. Williams,
A. J. Boydston and C. W. Bielawski, Chem. Soc. Rev., 2007, 36, 729;
(h) A. G. Tennyson, B. Norris and C. W. Bielawski, Macromolecules,
2
010, 43, 6923; (i) K. A. Williams and C. W. Bielawski, Chem.
The authors acknowledge the IASBS Research Council and
Iran National Science Foundation (INSF) for support of this
work. We also acknowledge Dr Saeed Emadi from IASBS for
his help and reading the manuscript.
Commun., 2010, 46, 5166; (j) A. G. Tennyson, D. M. Khramov,
C. D. Varnado Jr, P. T. Creswell, J. W. Kamplain, V. M. Lynch and
C. W. Bielawski, Organometallics, 2009, 28, 5142; (k) C. D. Varnado Jr,
V. M. Lynch and C. W. Bielawski, Dalton Trans., 2009, 7253;
(l) A. B. Powell, C. W. Bielawski and A. H. Cowley, J. Am. Chem.
Soc., 2009, 131, 18232; (m) A. G. Tennyson, J. W. Kamplain and
C. W. Bielawski, Chem. Commun., 2009, 2124; (n) D. J. Coady,
D. M. Khramov, B. C. Norris, A. G. Tennyson and C. W. Bielawski,
Angew. Chem., Int. Ed., 2009, 48, 5187; (o) K. A. Williams,
A. J. Boydston and C. W. Bielawski, J. R. Soc. Interface, 2007,
4, 359; (p) J. A. V. Er, A. G. Tennyson, J. W. Kamplain,
V. M. Lynch and C. W. Bielawski, Eur. J. Inorg. Chem., 2009, 1729.
14 B. Karimi and P. Fadavi Akhavan, Chem. Commun., 2009, 3570.
15 See ESIw for experimental details.
16 n-Hexane was chosen in order to minimize the product contamination
to Pd below the limit 1 ppm as determined by atomic absorption
spectroscopy (AAS). The reaction was performed on a 20 mmol scale.
17 The amount of base needed in each run was estimated by pH
analysis of the recovered aqueous reaction phase.
18 (a) S. J. Haswell, R. J. Middleton, B. O. Sullivan, V. Skelton,
P. Watts and P. Styring, Chem. Commun., 2001, 391; (b) D. Astruc
and F. Chardac, Chem. Rev., 2001, 101, 2991; (c) M. Meise and
R. Haag, ChemSusChem, 2008, 1, 637.
19 J. A. Widegren and R. G. Finke, J. Mol. Catal. A: Chem., 2003,
198, 317.
Notes and references
1
2
L. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133.
(a) G. Bringmann, S. Rudenauer, T. Bruhn, L. Benson and
R. Brun, Tetrahedron, 2008, 64, 5563; (b) Y. D. Wang,
M. Dutia, M. B. Floyd, A. S. Prashad, D. Berger and M. Lin,
Tetrahedron, 2009, 65, 57; (c) F. Bellina, S. Cauteruccio,
A. Di Fiore, C. Marchetti and R. Rossi, Tetrahedron, 2008,
64, 6060; (d) Y. Fang, R. Karisch and M. Lautens, J. Org. Chem.,
2007, 72, 1341.
3
4
5
(a) X. Yang, X. Dou and K. Mu
(
(
M. Lemaire, Chem. Rev., 2002, 102, 1359.
(a) A. F. Littke and G. C. Fu, Angew. Chem., Int. Ed., 2002,
¨
llen, Chem.–Asian J., 2008, 3, 759;
b) J. Kim and T. M. Swager, Nature, 2001, 411, 1030;
c) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and
41, 4176; (b) P. Lloyd-William and E. Giralt, Chem. Soc. Rev.,
2001, 3, 145; (c) L. Pu, Chem. Rev., 1998, 98, 2405; (d) N. Miyaura,
Top. Curr. Chem., 2002, 219, 11.
(a) E. A. B. Kantchev, C. J. O’Brien and M. G. Organ, Angew.
Chem., Int. Ed., 2007, 46, 2768; (b) W. A. Herrmann, Angew.
7
688 Chem. Commun., 2011, 47, 7686–7688
This journal is c The Royal Society of Chemistry 2011