Selective a n d En vir on m en ta lly F r ien d ly
Meth od ologies Ba sed on th e Use of
Electr och em istr y for F in e Ch em ica l
P r ep a r a tion : An Efficien t Syn th esis of
N,N′-Disu bstitu ted Ur ea s
The reaction with a Pd catalyst implies the use of a
reoxidant reagent in stoichiometric amount to transform
Pd(0) (that results from the reaction) into Pd(II) (the
reactive species of the catalyst); usually, high pressures
of CO and O
2
are necessary, sometimes in combination
1
5
with I
2
;
alternatively, CO, O , and copper salts can be
2
used.16
Isabella Chiarotto and Marta Feroci*
Electrochemistry has also been used as reoxidizing
system: recently Deng and co-workers have applied
electrochemistry to the synthesis of symmetrical dialkyl
Universit a` degli Studi “La Sapienza”, Dipartimento di
Ingegneria Chimica, dei Materiali, delle Materie Prime e
Metallurgia, via Castro Laurenziano, 7 I-00161 Rome, Italy
ureas using Pd(PPh
3
)
2
Cl
2
2
as catalyst and Cu(OAc) as co-
catalyst, instead of high pressure of CO/O
2
. In this case,
Received J une 3, 2003
2
it is proved that Cu(OAc) “acted as not only an electron
transfer agent but also a catalyst”.17
In all these syntheses of ureas, a side reaction of either
double carbonylation to oxamides takes place or the
formation of isocyanates probably by amine-elimination
reaction from urea. It is therefore important to find a
synthesis with high selectivity to minimize the side
reactions.
Abstr a ct: A novel efficient synthesis of N,N′-disubstituted
ureas has been developed. Aromatic and aliphatic primary
amines undergo oxidative carbonylation under atmospheric
pressure of carbon monoxide using Pd(II) catalyst in com-
bination with its anodic recycling at a graphite electrode.
In the course of our studies aimed at the use of elec-
trochemistry as a selective and environmentally friendly
tool in organic synthesis, we have developed a new
methodology for palladium(II) catalyst recycling by means
of its anodic oxidation at a graphite electrode in the
absence of any other cocatalyst or stoichimetric oxidant.
This methodology was applied to the synthesis of methyl
acetylencarboxylates starting from alkynes, carbon mon-
oxide, and methanol18 and oxazolidin-2-ones starting from
2-amino-1-alkanols and carbon monoxide, obtaining these
heterocyclic compounds in very good yields. In this
paper, we want to extend this new procedure in order to
obtain an efficient synthesis of N,N′-disubstituted ureas
starting from amines and carbon monoxide.
The advantage of the anodic recycling at a graphite
electrode of Pd(II) is that it proceeds efficiently under
atmospheric pressure of carbon monoxide and avoids the
Substituted ureas have been of recent interest due to
the appearance of this functionality in drug candidates
such as HIV protease inhibitors; in addition, ureas have
found widespread use as agricultural chemicals, resin
1
,2
precursors, dyes, and additives to petroleum compounds
and polymers.3
For these reasons, many efforts have been made to find
new efficient syntheses of ureas to replace the classical
4
reactions of amines with phosgene or related compounds
1
9
5
6
(
isocyanates, carbonyldiimidazole, or disuccinimmide
7
carbonate ).
The synthesis of symmetrical ureas from amines can
be accomplished by oxidative carbonylation of amines by
means of carbon monoxide and a transition-metal cata-
8
9
10
11
12
13
14
lyst (W, Ni, Mn, Co, Rh, Ru, and Pd ). Among
them, the most commonly used is Pd.
2
use of copper or halide ions and high pressure of O gas,
which also implies the formation of water and causes
undesired side reactions;17 this way, the performances
of the catalysts should be enhanced.
(
1) Lam, P. Y. S.; J adhav, P. K.; Eyermann, C. J .; Hodge, C. N.; Ru,
Y.; Bacheler, L. T.; Meek, J . L.; Otto, M. J .; Rayner, M. M.; Wong, Y.
N.; Chang, C. H.; Weber, P. C.; J ackson, D. A.; Sharpe, T. R.; Erickson-
Viitanen, S. Science 1994, 263, 380-384.
(
2) Lam, P. Y. S.; Ru, Y.; J adhav, P. K.; Aldrich, P. E.; DeLucca, G.
V.; Eyermann, C. J .; Chang, C. H.; Emmett, G.; Holler, E. R.; Daneker,
W. F.; Li, L. Z.; Confalone, P. N.; McHugh, R. J .; Han, Q.; Li, R. H.;
Markwalder, J . A.; Seitz, S. P.; Sharpe, T. R.; Bacheler, L. T.; Rayner,
M. M.; Klabe, R. M.; Shum, L. Y.; Winslow, D. L.; Kornhauser, D. M.;
J ackson, D. A.; Erickson-Viitanen, S.; Hodge, C. N. J . Med. Chem.
(8) McCusker, J . E.; Grasso, C. A.; Main, A. D.; McElwee-White, L.
Org. Lett. 1999, 1, 961-964. McCusker, J . E.; Qian, F.; McElwee-White,
L. J . Mol. Catal. A.: Chem. 2000, 159, 11-17. McCusker, J . E.; Main,
A. D.; J ohnson, K. S.; Grasso, C. A.; McElwee-White, L. J . Org. Chem.
2000, 65, 5216-5222.
1
996, 39, 3514-3525.
(9) Giannoccaro, P.; Nobile, C. F.; Mastrorilli, C.; Ravasio, J . J .
Organomet. Chem. 1991, 419, 251-258.
(
3) Dragovich, P. S.; Barker, J . E.; French, J .; Imbacuan, M.; Kalish,
V. J .; Kissinger, C. R.; Knighton, D. R.; Lewis, C. T.; Moomaw, E. W.;
Parge, H. E.; Pelletier, L. A. K.; Prins, T. J .; Showalter, R. E.; Tatlock,
J . H.; Tucker, K. D.; Villafranca, J . E. J . Med. Chem. 1996, 39, 1872-
(10) Srivastva, S. C.; Shrimal, A. K.; Srivastva, A. J . Organomet.
Chem. 1991, 414, 65-69.
(11) Bassoli, A.; Rindone, B.; Tollari, S.; Chioccara, F. J . Mol. Catal.
1990, 60, 41-48.
1
884.
(
4) For use of phosgene and its derivatives, see: Hegarty, A. F.;
(12) Mulla, S. A. R.; Gupte, S. P.; Chaudhari, R. V. J . Mol. Catal.
1991, 67, L7-L10.
Drennan, L. J . In Comprehensive Organic Funcional Group Transfor-
mations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Perga-
mon: Oxford, 1995; Vol. 6, pp 499-526. Guichard, G.; Semetery, V.;
Didierjean, C.; Aubry, A.; Briand, J . P.; Rodriguez, M. J . Org. Chem.
(13) Mulla, S. A. R.; Rode, C. V.; Kelkar, A. A.; Gupte, S. P. J . Mol.
Catal. A.: Chem. 1997, 122, 103-109.
(14) Valli, V. L. K.; Alper, H. Organometallics 1995, 14, 80-82.
Gupte, S. P.; Chaudhari, R. V. J . Catal. 1988, 114, 246-258.
(15) Pri-Bar, I.; Alper, H. Can. J . Chem. 1990, 68, 1544-1547. Shi,
F.; Deng, Y.; SiMa, T.; Yang, H. Tetrahedron Lett. 2001, 42, 2161-
2163.
1
999, 64, 8702-8705. Majer, P.; Randal, R. S. J . Org. Chem. 1994,
5
9, 1937-1938. Scialdone, M. A.; Shuey, S. W.; Soper, P.; Hamuro, Y.;
Burns, D. M. J . Org. Chem. 1998, 63, 4802-4807.
(
5) Satchell, R. S.; Satchell, D. P. N. Chem. Soc. Rev. 1975, 4, 231-
50.
6) Zhang, X.; Rodrigues, J .; Evans, L.; Hinckle, B.; Ballantyne, L.;
Pena, M. J . Org. Chem. 1997, 62, 6420-6423.
7) Takeda, K.; Akagi, Y.; Saiki, A.; Tsukahara, T.; Ogura, H.
Tetrahedron Lett. 1983, 24, 4569-4572.
2
(16) Giannoccaro, P. J . Organomet. Chem. 1987, 336, 271-278.
(17) Yang, H.; Deng, Y.; Shi, F. J . Mol. Catal. A.: Chem. 2001, 176,
73-78.
(18) Chiarotto, I.; Carelli, I. Synth. Commun. 2002, 32, 881-886.
(19) Chiarotto, I.; Feroci, M. Tetrahedron Lett. 2001, 42, 3451-3453.
(
(
1
0.1021/jo034750d CCC: $25.00 © 2003 American Chemical Society
Published on Web 08/15/2003
J . Org. Chem. 2003, 68, 7137-7139
7137