Y. N. Belokon’ et al. / Tetrahedron: Asymmetry 20 (2009) 1746–1752
1751
4
.2.7. Lithium
tertleucinato]cobaltate [
4% Yield. Mp >300 °C. ½
O): 1.13 (s, 18H, Me
K
-bis[N-(3-methoxysalicylidene)-(S)-
The enantiomeric composition of the product was determined by
gas chromatography.
K
a
-3]Li
25
1
8
ꢄ
¼ ꢁ4500 (c 0.027, MeOH). H NMR
D
(
D
2
3
C); 3.08 (s, 6H, OMe); 4.52 (s, 2H,
a
-H-Val);
4
.5. Asymmetric Michael reaction (general procedure)
6
.43-6.54 (m, 4H, CHAr); 6.99 (d, J 6.4, 2H, CHAr); 8.24 (s, 2H,
CH@N). Anal. Calcd for C28 O: C, 52.02; H, 6.24;
CoLiꢀ3H
N, 4.33. Found: C, 51.89; H, 6.51; N, 4.39.
H
34
N
2
O
8
2
A Schlenk flask was evacuated and filled with argon, whilst
being heated with a heatgun. Then the flask was cooled to room
temperature under a flow of argon. A catalyst (0.015 mmol) and
a base (0.015 mmol) were added to the flask and cyclohex-2-enone
4
.2.8. Lithium
tertleucinato]cobaltate [
2% Yield. Mp >300 °C. ½
O): 1.17 (s, 18H, Me
D
-bis[N-(3-methoxysalicylidene)-(S)-
D
-3]Li
(
0.03mL, 0.3 mmol) solution in dioxane (1 mL) was added. Then
the solution was stirred for 2 min and diethyl malonate
0.046 mL, 0.049 g, 0.3 mmol) was added. The reaction mixture
2
D
5
1
8
a
ꢄ
¼ ꢁ5763 (c 0.027, MeOH). H NMR
(
D
2
3
C); 3.62 (s, 6H, OMe); 4.29 (s, 2H,
a
-H-Val);
(
6
.22 (t, J 7.3, 2H, CHAr); 6.84 (d, J 7.9, 2H, CHAr); 7.14 (d, J 7.9, 2H,
CHAr); 8.34 (s, 2H, CH@N). Anal. Calcd for C28 O: C,
CoLiꢀ3H
2.02; H, 6.24; N, 4.33. Found: C, 52.19; H, 6.37; N, 4.10.
was stirred for 48 h under an argon atmosphere. The catalyst was
removed from the reaction mixture by column chromatography
on silica gel (column 60 ꢂ 5 mm), using EtOAc as an eluent. The
enantiomeric purity of the product was determined by chiral HPLC.
H
34
N
2
O
8
2
5
4
.2.9. Lithium
-4]Li
4% Yield. Mp >300 °C. ½
K-bis[N-(3-allylsalicylidene)-(S)-valinato]
cobaltate [
K
2
D
5
¼ ꢁ4633 (c 0.06, MeOH). 1H NMR
8
a
ꢄ
4.6. Crystallographic data
(
3 3
CD OD): 1.18–1.28. (m, 12H, CH -Val); 2.55 (m, 2H, b-H-Val);
2
.76 (AB part of ABX, JAB 15.0, JAX 8.0, JBX 6.6, 4H, CH
-H-Val); 4.64–4.72 (m, 4H, H C@); 5.32 (m, 2H, X part
of ABX, @CH–); 6.41 (t, J 7.4, 2H, CHAr); 6.74 (d, J 6.5, 2H, CHAr);
2
-Allyl); 4.38
The crystallographic data have been deposited with the Cam-
(
m, 2H,
a
2
bridge Crystallographic Data Centre, CCDC 729876 for [
K-3]Li
and CCDC 729877 for [ -2]Na. Copies of this information may be
K
7
C
.22 (d, 2H, J 7.7, CHAr); 8.33 (s, 2H, CH@N). Anal. Calcd for
CoLiꢀ4H O: C, 54.88; H, 6.45; N, 4.27. Found: C, 55.08;
obtained free of charge from The Director, CCDC, 12 Union Road,
30
H
34
N
2
O
6
2
H, 5.72; N, 3.90.
4
.2.10. Lithium
cobaltate [ -4]Li
4% Yield. Mp >300 °C. ½
D-bis[N-(3-allylsalicylidene)-(S)-valinato]
Acknowledgements
D
2
D
5
¼ ꢁ732 (c 0.044, MeOH). 1H NMR
8
a
ꢄ
This work was financially supported by an ISTC Grant G-1361,
RFBR Grant 09-03-00730-a and RAS Presidium Program P18. The
authors thank Dr. M. Ilyin for conducting chiral GLC analyses of
the cyanohydrins and for HPLC analyses of the Michael adducts.
(
3 3
CD OD): 1.22–1.38 (m, 12H, CH -Val); 2.86 (m, 2H, b-H-Val);
2
.92, 3.18 (AB part of ABX, JAB 15.1, JAX 5.0, JBX 7.2, 4H, CH
2
-Allyl);
4
.46 (m, 2H, -H-Val); 4.60–4.73 (m, 4H, H C@); 5.46 (m, 2H, X
a
2
part of ABX, @CH–); 6.48 (t, J 7.2, 2H, CHAr); 6.89 (d, J 7.2, 2H, CHAr);
7
C
5
.34 (d, 2H, J 7.9, CHAr); 8.50 (s, 2H, CH@N). Anal. Calcd for
CoLiꢀ1.25H O: C, 59.36; H, 6.06; N, 4.62. Found: C,
9.25; H, 6.12; N, 4.29.
30
H
34
N
2
O
6
2
References
1.
Some recent references: North, M.; Usanov, D.; Young, C. Chem. Rev. 2008, 108,
146–5226. and references cited therein; Snyder, S.; Tang, Z.; Gupta, R. J. Am.
5
4
.3. Syntheses of lithium phenolates were conducted according
Chem. Soc. 2009, 131, 5744–5745; Tone, H.; Buchotte, M.; Mordant, C.; Guittet,
E.; Ayad, T.; Ratovelmanana-Vidal, V. Org. Lett. 2009, 11, 1995–1997; Lai, H.;
Huang, Z.; Wu, Q.; Qin, Y. J. Org. Chem. 2009, 74, 283–288.
21
to the literature procedure.
2
3
.
.
Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165–4168.
Gonçalves-Faebos, M.-H.; Vial, L.; Lacour, J. Chem. Commun. 2008, 7, 829–831;
Constant, S.; Tortoioli, S.; Muller, J.; Linder, D.; Buron, F.; Lacour, J. Angew.
Chem., Int. Ed. 2007, 46, 8979–8982.
Llewellyn, D.; Arndtsen, B. Organometallics 2004, 23, 2838–2840; Llewellyn, D.;
Arndsten, B. Tetrahedron: Asymmetry 2005, 16, 1789–1799.
4
7
4
.3.1. Lithium 2,6-di-(tert-buthyl)-4-methylphenolate
Anal. Calcd for C15
2.35; H, 9.90.
2
H23OLiꢀ1.25H O: C, 72.41; H, 10.33. Found: C,
4.
.3.2. Lithium phenolate
Anal. Calcd for C
OLiꢀ2H
H, 6.70.
5. Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4393–4395; Wang, X.; List, B.
Angew. Chem., Int. Ed. 2008, 47, 1119–1122; Mukherjee, S.; List, B. J. Am. Chem.
Soc. 2007, 129, 11336–11337; Rueping, M.; Antonchick, A. P.; Brinkmann, C.
Angew. Chem., Int. Ed. 2007, 46, 6903–6906. and references cited therein;
Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496–499.
6
H
5
2
O: C, 52.96; H, 6.67. Found: C, 52.81;
6
.
Shibasaki, M. In Asymmetric Two-center Catalysis; Fritz, V., Staddart, J.,
Shibasaki, M., Eds.; Simulating Concepts in Chemistry; Wiley-VCH: New York,
4
6
4
6
4
.3.3. Lithium 2-naphtholate
Anal. Calcd for C10
4.04; H, 5.91.
7
H OLiꢀ2H
2
O: C, 64.53; H, 5.96. Found: C,
2000; pp 105–121.
7. (a) Holmes, I. P.; Kagan, H. B. Tetrahedron Lett. 2000, 41, 7453–7456; (b) Hatano,
M.; Ikeno, T.; Miyamoto, T.; Ishihara, K. J. Am. Chem. Soc 2005, 127, 10776–
10777.
0
.3.4. Mono lithium salt of biphenyl-2,2 -diol
8
.
Hatano, M.; Ikeno, T.; Matsumura, T.; Torii, S.; Ishihara, K. Adv. Synth. Catal.
008, 350, 1776–1780.
9. Ichibakase, T.; Orito, Y.; Nakajima, M. Tetrahedron Lett. 2008, 49, 4427–4429.
Anal. Calcd for C12
9.01; H, 5.91.
9
H OLiꢀ2H
2
O: C, 68.58; H, 5.28. Found: C,
2
10. Imahori, T. In Li(I), Na(I) and K(I) Lewis Acids; Yamamoto, H., Ishihara, K., Eds.;
Acid Catalysis in Modern Organic Synthesis; Wiley-VCH: Weinheim, 2008; pp
1
.4. Trimethylsilylcyanation of aldehydes (general procedure)
09–133.
1. Moss, S.; King, B.; de Meijere, A.; Kozhushkov, S.; Eaton, P.; Michl, J. Org. Lett.
001, 3, 2375.
2. Volkis, V.; Mei, H.; Shoemaker, R. K.; Michl, J. J. Am. Chem. Soc. 2009, 131, 3132–
133.
1
1
2
A Schlenk flask was evacuated and filled with argon whilst
being heated with a heatgun. Then the flask was cooled under a
flow of argon, and a catalyst (0.02 mmol), (0.1 mmol), CH Cl
1 mL), aldehyde (1 mmol) and trimethylsilyl cyanide (0.14 mL,
3
´
2
2
13. Belokon, Y. N.; Maleev, V. I.; Kataev, D. A.; Malfanov, I. L.; Bulychev, A. G.;
´
Moskalenko, M. A.; Saveleva, T. F.; Skrupskaya, T. V.; Lyssenko, K. A.;
(
Godovikov, I. A.; North, M. Tetrahedron: Asymmetry 2008, 19, 822–831.
0
.11 g, 1.1 mmol) were introduced into the flask. The reaction mix-
14. K- or D-Correspond, respectively, to left and right spiral arrangement of
ture was stirred for 1 h at ꢃ20 °C under argon and then passed
ligands in relation to the C2 axis of the complexes, according to Legg, J.;
Douglas, B. J. Am. Chem. Soc. 1966, 88, 2697–2699.
through a thin SiO layer, eluting the reaction product with CH Cl .
2
2
2