8
8
M. Kuroboshi et al.
LETTER
could be recovered and reused to generate the organic re-
ductant.
(13) (a) Bird, C. L.; Kuhn, A. T. Chem. Soc. Rev. 1981, 10, 49.
(
b) Hünig, S.; Berneth, H. Top. Curr. Chem. 1980, 92, 1;
Chem. Abstr. 1980, 93, 237989n. (c) Kamogawa, H.; Sato,
S. Bull. Chem. Soc. Jpn. 1991, 64, 321. (d) Kingh, R. P.;
Shreeve, J. M. Inorg. Chem. 2003, 42, 7416. (e) Kijima,
M.; Sakawaki, A.; Sato, T. Bull. Chem. Soc. Jpn. 1994, 67,
Acknowledgment
This research was partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Research
2323. (f) Depature, L.; Surpateanu, G. Heterocycles 2002,
5
7, 2239.
(
C), 19550108, 2007-2009, and Electric Technology Research
2+
–
1
(
14) Purity of [C V ][Tf N ] was confirmed by H NMR,
8 2 2
Foundation of Chugoku.
13
1
C NMR, IR, and elemental analysis. H NMR (200 MHz,
CD Cl ): d = 0.8–1.0 (m, 6 H), 1.20–1.50 (m, 20 H), 1.90–
2
2
2
4
.20 (m, 4 H), 4.64 (t, J = 7.6 Hz, 4 H), 8.46 (d, J = 6.9 Hz,
References and Notes
13
H), 8.93 (d, J = 6.9 Hz, 4 H). C NMR (50 MHz, CD Cl ):
2
2
d = 13.41, 22.16, 25.59, 28.41, 28.48, 31.01, 31.21, 62.57,
(
1) (a) Formic acid: Mukhopadhyay, S.; Yaghmur, A.; Baidossi,
1
3
1
3
19.28 (q, J = 319.1 Hz), 127.03, 144.96, 149.50. IR (KBr):
M.; Kundu, B.; Sasson, Y. Org. Process Res. Dev. 2003, 7,
136, 3104, 3074, 2952, 2929, 2861, 1644, 1347, 1203,
641. (b) Hydroquinone: Hennings, D. D.; Iwama, T.; Rawal,
–
1
133, 1058 cm . Anal. Calcd for C H F N O S : C,
V. H. Org. Lett. 1999, 1, 1205. (c) Ascorbic acid: Ram,
R. N.; Singh, V. Tetrahedron Lett. 2006, 47, 7625.
2) (a) Burkholder, C.; Dolbier, R. W. Jr.; Médebielle, M.
Tetrahedron Lett. 1997, 38, 821. (b) Pawelke, G. J.
Fluorine Chem. 1991, 52, 229. (c) Takeuchi, N.; Aït-
Mohand, S.; Médebielle, M.; Dolbier, R. W. Jr. Tetrahedron
Lett. 2002, 43, 4317. (d) Médebielle, M.; Kato, K.; Dolbier,
R. W. Jr. Tetrahedron Lett. 2003, 44, 7871.
3) Kuroboshi, M.; Tanaka, M.; Kishimoto, S.; Goto, K.;
Mochizuki, M.; Tanaka, H. Tetrahedron Lett. 2000, 41, 81.
4) Kuroboshi, M.; Tanaka, M.; Goto, K.; Mochizuki, M.;
Tanaka, H. Synlett 1999, 1930.
30 42 12
4
8 4
8.21; H, 4.49; N, 5.94. Found: C, 38.28; H, 4.57; N, 5.93.
2
+
–
[
C V ][Tf N ] was dried in vacuo at 100 °C overnight and
(
8 2 2
used without further purification.
(
15) In a cathodic compartment of a divided cell was placed a
2
+
–
THF (3 mL) solution of [C V ][Tf N ] (1 mmol),
8
2
2
+
–
2
[
Bu N ][Tf N ] (2 mmol), and a Pt (1 × 1.5 cm ) cathode. In
an anodic compartment was placed a THF (3 mL) solution of
Bu N ][Tf N ] (2 mmol) and a Mg anode. A constant
4
2
+
–
[
(
(
(
4 2
current (25 mA) was applied at r.t. until 2 F/mol
2
+
–
[
C V ][Tf N ] of electricity was passed. The resulting dark
8 2 2
blue solution in cathodic cell was added to a mixture of 1a
0.5 mmol) and a catalytic amount of PdCl (PhCN) (0.025
(
5) (a) Kuroboshi, M.; Waki, Y.; Tanaka, H. Synlett 2002, 637.
2
2
mmol) by means of cannulation. The whole mixture was
stirred for 30 h at 60 °C. Usual workup and purification by
(
2
b) Kuroboshi, M.; Waki, Y.; Tanaka, H. J. Org. Chem.
003, 68, 3938. (c) Kuroboshi, M.; Takeda, T.; Motoki, R.;
column chromatography (SiO ) gave 2a (0.227 mmol, 91%).
Tanaka, H. Chem. Lett. 2005, 34, 530.
2
(
(
16) Iyer, S.; Kulkarni, G. M.; Ramesh, C. Tetrahedron 2004, 60,
(
(
(
(
6) Endo, T.; Saotome, Y.; Okawara, M. Tetrahedron Lett.
2
163.
17) In the case of Pd/TDAE-promoted reductive coupling of aryl
bromides, PdCl , PdCl (PhCN) , Pd(OAc) , and Pd (dba)
1985, 26, 4525.
7) Park, K. K.; Lee, C. W.; Oh, S.-Y. J. Chem. Soc., Perkin
Trans. 1 1990, 2356.
8) Park, K. K.; Lee, C. W.; Choi, S. Y. J. Chem. Soc., Perkin
Trans. 1 1992, 601.
2
2
2
2
2
3
gave the coupling products, whereas Pd(PPh ) and
3 4
PdCl (PPh ) did not promote the coupling, and the starting
2
3 2
aryl bromides were recovered quantitatively.
9) Tomioka, H.; Ueda, K.; Ohi, H.; Izawa, Y. Chem. Lett. 1986,
2
+
–
(
18) A THF solution of [C V ][Tf N ] (1 mmol) and
1359.
8 2 2
+
–
[
Bu N ][Tf N ] (2 mmol) was electrolyzed under constant
4 2
(
(
10) Maidan, R.; Goren, Z.; Becker, J. Y.; Willner, I. J. Am.
Chem. Soc. 1984, 106, 6217.
11) (a) Shosenji, H.; Nakano, Y.; Yamada, K. Chem. Lett. 1988,
current conditions (30 mA) at r.t. until 1 F/mol
2
+
–
[
C V ][Tf N ] of electricity was passed. The solution was
8 2 2
used for the reductive coupling of 1a (0.5 mmol) in the
presence of PdCl (PhCN) (0.025 mmol) to give 2a and 1a
1033. (b) Mandler, D.; Willner, I. J. Phys. Chem. 1987, 91,
3600. (c) Coche, L.; Moutet, J.-C. J. Am. Chem. Soc. 1987,
109, 6887. (d) Kashiwagi, Y.; Shibayama, N.; Anzai, J.;
2
2
in 59% and 32% yield, respectively.
(
(
19) Hammarstroem, L.; Almgren, M.; Norrby, T. J. Phys. Chem.
Osa, T. Electrochemistry 2000, 68, 42; Chem. Abstr. 2000,
32, 70660h.
1992, 96, 5017.
1
20) In an undivided cell were placed a mixture of 1a (0.5 mmol),
(
12) Yuan, R.; Watanabe, S.; Kuwabata, S.; Yoneyama, H.
2
+
–
+
–
[
C V ][Tf N ] (0.025 mmol), [Bu N ][Tf N ] (2.0 mmol),
8 2 2 4 2
J. Org. Chem. 1997, 62, 2494.
a catalytic amount of PdCl (PhCN) (0.025 mmol), and THF
2
2
(
3 mL). A Mg anode and a Pt cathode were immersed in the
solution, and a constant current (5 mA) was supplied at 60
C until 2 F/mol-1a of electricity was passed.
°
Synlett 2009, No. 1, 85–88 © Thieme Stuttgart · New York