With this in mind, we wished to design simple, readily
available, and tunable 1,2-diamine catalyst templates based
on the cinchona alkaloid backbone as mediators of asym-
metric “enamine” organocatalysis for the first time (Figure
Table 1. Initial Catalyst Screening and Optimization
1). Such a strategy was appealing primarily for two rea-
entry
catalyst
DHQA
9-epi-DHQA
9-epi-DHQBA CH3COOH
9-epi-DHQA
acid
mol % H2O t (d) conv (%)a,b
1
2
3
4
5
6
7
CH3COOH
CH3COOH
100
100
100
0
5.8
5.8
5.8
7 (19)
24
0
3.8 >98c
9-epi-DHQBA
9-epi-DHQA
0
100
0
0
0
0
0
0
0
3.8
0
3.8 >98c
9-epi-DHQA
9-epi-DHQA
9-epi-DHQA
9-epi-DHQA PhCOOH
DHQA PhCOOH
9-epi-DHQBA PhCOOH
9-epi-DHQDA PhCOOH
9-epi-DHQDA PhCOOH
9-epi-DHQDA PhCOOH
CH3COOH
CH3COOH
CF3COOH
3.8
3.7
3.7
3.7
3.8
3.8
3.8
3.8
6.9
31 (63)
24
15
68 (45)
12
d
8
d
9
d
1
1
1
1
1
1
0
1
2
3
4
5
d
d
d
d
d
Figure 1. Novel cinchona alkaloid-derived catalysts.
0
91 (-49)
90 (-59)
73 (-71)
e
0
0
sons: (a) availability - the alkaloid starting materials are
inexpensive and available in both pseudoenantiomeric forms,
thereby avoiding reliance on either amino-acid-derived
f
a
Determined by 1H NMR spectroscopy. b Enantioselectivity (% ee,
c
d
determined by CSP-HPLC) in parentheses. Multiple products. 10 equiv
of acetone used. Isolated yield: reaction at 8 °C with 20 mol % catalyst.
Isolated yield:reaction at 0 °C with 20 mol % catalyst
e
f
(3) (a) Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (b) Li, H.;
Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906. (c)
Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett. 2004, 45, 9185.
(
d) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am.
Chem. Soc. 2005, 127, 119. (e) McCooey, S. H.; Connon, S. J. Angew.
Chem., Int. Ed. 2005, 44, 6367. (f) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem.
Commun. 2005, 4481. (g) Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W.
Org. Lett. 2005, 7, 4713. (h) Herrera, R. P.; Sgarzani, V.; Bernardi, L.;
Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576. (i) Zhuang, W.; Hazell,
R. G.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 2566. (j) Li, H.; Wang,
Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew.
Chem., Int. Ed. 2005, 44, 105. (k) McCooey, S. H.; McCabe, T.; Connon,
S. J. J. Org. Chem. 2006, 71, 7494. (l) Fleming, E. M.; McCabe, T.; Connon,
S. J. Tetrahedron Lett. 2006, 47, 7037. (m) Wang, J.; Li, H.; Zu, L.; Wang,
W. Org. Lett. 2006, 8, 1391. (n) Li, H.; Wang, J.; Zu, L.; Wang, W.
Tetrahedron Lett. 2006, 47, 2585. (o) Hamza, A.; Schubert, G.; So o´ s, T.;
Papai, I. J. Am. Chem. Soc. 2006, 128, 13151. (p) Poulsen, T. B.; Bell, M.;
Jørgensen, K. A. Org. Biomol. Chem. 2006, 4, 63.
stereogenicity or resolution techniques; in addition the
catalysts would be accessible from available alkaloid deriva-
3e,k
tives in a one-pot procedure, and (b) tunability - we and
3f,8
others have recently demonstrated the potential advantages
associated with tuning the chiral evironment of modified
cinchona alkaloid organocatalysts through the inversion of
configuration at C-9; this together with an ability to design
both primary and secondary prototype amine catalysts affords
an exceptional degree of scope for catalyst optimization from
9
simple starting materials. We therefore prepared the 9-amino
(
4) For selected recent reviews on the use of hydrogen bonding in
derivative of dihydroquinine quinidine (DHQA) together
with C-9 inverted and N-benzylated analogues (Figure 1)10
and evaluated them as organocatalysts of a challenging (from
catalysis, see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal.
006, 348, 999. (b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed.
006, 45, 1520. (c) Connon, S. J. Chem. Eur. J. 2006, 12, 5418. (d) Connon,
S. J. Angew. Chem., Int. Ed. 2006, 45, 3909. (e) Takemoto, Y. Org. Biomol.
Chem. 2005, 3, 4299. (f) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43,
2
2
2
062. (g) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289.
(6) (a) Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8, 3077. (b)
Moss e´ , S.; Alexakis, A. Org. Lett. 2006, 8, 3577. (c) Mase, N.; Watanabe,
K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc.
2006, 128, 4966. (d) Luo, S.; Mi, X.; Zhang, L.; Liu, S.; Xu, H.; Cheng,
J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093. (e) Luo, S.; Mi, X.; Zhang,
L.; Liu, S.; Xu, H.; Cheng, J.-P. Chem. Commun. 2006, 3687. (f) Almai,
D.; Alonso, D. A.; N a´ jera, C. Tetrahedron: Asymmetry 2006, 17, 2064.
(g) Li, Y.; Liu, X.-Y.; Zhao, G. Tetrahedron: Asymmetry 2006, 17, 2034.
(h) Zhu, M.-K.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z.
Tetrahedron: Asymmetry 2006, 17, 491. (i) Cao, C.-L.; Ye, M.-C.; Sun,
X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901. (j) Palomo, C.; Vera, S.; Mielgo,
A.; G o´ mez-Bengoa, E. Angew. Chem., Int. Ed. 2006, 45, 5984. (k) Pansare,
S. V.; Pandya, K. J. Am. Chem. Soc. 2006, 128, 9624. (l) Moss e´ , S.; Laars,
M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559. (m) Wang,
J; Li, H; Lou, B.; Zu, L.; Guo, H.; Wang, W. Chem. Eur. J. 2006, 12,
4321.
(
5) (a) List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423. (b)
Betancourt, J. M.; Saktivel, K.; Thayumanavan, R.; Barbas, C. F., III. J.
Am. Chem. Soc. 2001, 123, 5260. (c) Betancourt, J. M.; Barbas, C. F., III.
Org. Lett. 2001, 3, 3737. (d) Enders, D.; Seki, A. Synlett 2002, 26. (e)
Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611. (f) Andrey, O.; Alexakis,
A.; Tomassini, A.; Bernardinelli, G. AdV. Synth. Catal. 2004, 346, 1147.
(
(
g) Andrey, O.; Alexakis, A.; Bernardinelli, G. Org. Lett. 2003, 5, 2559.
h) Martin, H. J.; List, B. Synlett 2003, 1901. (i) Ishii, T.; Fujioka, S.;
Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558. (j) Cobb,
A. J. A.; Longbottom, D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun.
2004, 1808. (k) Betancort, J. M.; Sakthivel, K.; Thayumanavan, R.; Tanaka,
F.; Barbas, C. F., III. Synthesis 2004, 9, 1509. (l) Mase, N.; Thayumanavan,
R.; Tanaka, F.; Barbas, C. F., III. Org. Lett. 2004, 6, 2527. (m) Kotrusz,
P.; Toma, S.; Schmalz, H.-G.; Adler, A. Eur. J. Org. Chem. 2004, 1577.
(n) Wang, W.; Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369. (o)
Tsogoeva, S. B.; Yalalov, D. A.; Hateley, M. J.; Weckbecker, C.;
Huthmacher, K. Eur. J. Org. Chem. 2005, 4995. (p) Hayashi, Y.; Gotoh,
T.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212. (q) Cobb,
A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org.
Biomol. Chem. 2005, 3, 84.
(7) (a) Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451. (b) Huang,
H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170. (c) Yalonde, M.
P.; Chen. Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366. (d)
Xu, Y.; Zou, W.; Sund e´ n, H.; Ibrahem, I.; C o´ rdova, A. AdV. Synth. Catal.
2006, 348, 418. (e) Xu, Y.; Cordova, A. Chem. Commun. 2006, 460.
600
Org. Lett., Vol. 9, No. 4, 2007