Chemistry of Materials
Article
(
9) Lee, J.; Cha, D.; Oh, Y.; Ko, K.; Song, J. J. Hazard. Mater. 2009,
CONCLUDING REMARKS
■
1
(
64, 67.
10) Kaplan, D. I.; Serne, R. J.; Parker, K. E.; Kutnyakov, I. V.
Environ. Sci. Technol. 2000, 34, 399.
11) Miller, A.; Wang, Y. J. Environ. Radioact. 2014, 133, 35.
The polysulfide-containing S -LDH intercalates are strong
x
iodine vapor capture agents despite their low surface areas.
The LDH layers act as a supporting substrate and provide these
polysulfide compounds with a protective yet accessible space
for iodine vapor. The reducing property of the polysulfide
species is the driving force for the chemisorption of iodine. The
(
(12) Chapman, K. W.; Chupas, P. J.; Nenoff, T. M. J. Am. Chem. Soc.
2010, 132, 8897.
(13) Riebe, B.; Dultz, S.; Bunnenberg, C. Appl. Clay Sci. 2005, 28, 9.
−
(
14) Zeng, M.-H.; Wang, Q.-X.; Tan, Y.-X.; Hu, S.; Zhao, H.-X.;
Long, L.-S.; Kurmoo, M. J. Am. Chem. Soc. 2010, 132, 2561.
15) Sava, D. F.; Rodriguez, M. A.; Chapman, K. W.; Chupas, P. J.;
Greathouse, J. A.; Crozier, P. S.; Nenoff, T. M. J. Am. Chem. Soc. 2011,
33, 12398.
16) Liu, Q.-K.; Ma, J.-P.; Dong, Y.-B. Chem. Commun. 2011, 47,
185.
17) Shi, X.; Yang, J.; Salvador, J. R.; Chi, M. F.; Cho, J. Y.; Wang, H.;
I2 molecules are reduced to I3 ions while the polysulfide ions
oxidize to form S . Moreover, there is a physisorption
8
(
component to the process contributing to the already high
efficiency for I (g) capture. The S -LDH, S -LDH, and S -LDH
2
2
4
6
1
(
7
(
materials showed iodine capture capacities of 1.32, 1.52, and
.43 g/g, reaching a high adsorption rate of 152% by weight.
These are comparable to or higher than previously reported
materials such as the best MOF materials with their highest I2
uptake of 125%. The results reported here demonstrate that
1
Bai, S. Q.; Yang, J. H.; Zhang, W. Q.; Chen, L. D. J. Am. Chem. Soc.
2011, 133, 7837.
high surface area materials are not always necessary for the
(18) Chapman, K. W.; Sava, D. F.; Halder, G. J.; Chupas, P. J.;
Nenoff, T. M. J. Am. Chem. Soc. 2011, 133, 18583.
effective capture of massive amounts of iodine. Compared with
+
2+
(
19) Yin, Z.; Wang, Q.-X.; Zeng, M.-H. J. Am. Chem. Soc. 2012, 134,
857.
20) Falaise, C.; Volkringer, C.; Facqueur, J.; Bousquet, T.; Gasnot,
L.; Loiseau, T. Chem. Commun. 2013, 49, 10320.
21) Bennett, T. D.; Saines, P. J.; Keen, D. A.; Tan, J.-C.; Cheetham,
A. K. Chem.Eur. J. 2013, 19, 7049.
22) Luo, Y. H.; Yu, X. Y.; Yang, J. J.; Zhang, H. CrystEngComm
014, 16, 47.
the Ag -loaded zeolitic materials or the Pt -containing
aerogels, the lower cost of environmentally safe and abundant
4
(
elements of S -LDH combined with their significant iodine
x
adsorption capacity make them promising for highly efficient
I2(g) capture. The latter is of importance to manage radioactive
waste iodide relevant to the nuclear energy industry.
(
(
2
ASSOCIATED CONTENT
(23) Wang, X.-L.; Qin, C.; Lan, Y.-Q.; Shao, K.-Z.; Su, Z.-M.; Wang,
E.-B. Chem. Commun. 2009, 410.
■
*
S
Supporting Information
(24) Long, D. L.; Hill, R. J.; Blake, A. J.; Champness, N. R.;
UV/vis absorption spectra for I-laden sample (S -LDH-I)
4
Hubberstey, P.; Proserpio, D. M.; Wilson, C.; Schroder, M. Angew.
Chem., Int. Ed. 2004, 43, 1851.
dispersed in acetonitrile; BET surface areas of S -LDH and S -
2
4
LDH; SEM images; EDS and elemental distribution maps for
(
́ ̌
25) Riley, B. J.; Chun, J.; Ryan, J. V.; Matyas, J.; Li, X. S.; Matson, D.
2
6
W.; Sundaram, S. K.; Strachan, D. M.; Vienna, J. D. RSC Adv. 2011, 1,
1704.
(
26) San
Colloid Interface Sci. 2006, 300, 437.
27) Katsoulidis, A. P.; He, J. Q.; Kanatzidis, M. G. Chem. Mater.
012, 24, 1937.
28) Riley, B. J.; P, D. A.; Chun, J.; Matyas
G.; Law, J. D.; Kanatzidis, M. G. Environ. Sci. Technol. 2014, 48, 5832.
29) Riley, B. J.; Chun, J.; Um, W.; Lepry, W. C.; Matyas, J.; Olszta,
́
chez-Polo, M.; Rivera-Utrilla, J.; Salhi, E.; Von Gunten, U. J.
AUTHOR INFORMATION
■
(
2
(
Corresponding Author
́ ̌
, J.; Lepry, W. C.; Garn, T.
(
Notes
M. J.; Li, X. H.; Polychronopoulou, K.; Kanatzidis, M. G. Environ. Sci.
Technol. 2013, 47, 7540.
The authors declare no competing financial interest.
(
30) Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Science 2005, 307,
ACKNOWLEDGMENTS
■
397.
(
31) (a) Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.;
This work is supported by the National Science Foundations of
China (NSFC; Nos. 21271028, 51272030,and 21271001) and
the Department of Energy USA (NEUP program, Project 12-
Kanatzidis, M. G. Science 2007, 317, 490. Shafaei-Fallah, M.; He, J. Q.;
Rothenberger, A.; Kanatzidis, J. J. Am. Chem. Soc. 2011, 133, 1200−
1
202.
3438).
(32) Oh, Y.; Morris, C. D.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012,
1
34, 14604.
REFERENCES
■
(33) Khan, A. I.; O’Hare, D. J. Mater. Chem. 2002, 12, 3191.
(34) Constantino, V. R.; Pinnavaia, T. J. Catal. Lett. 1994, 23, 361.
(35) Corma, A.; Fornes, V.; Rey, F.; Cervilla, A.; Llopis, E.; Ribera, A.
J. Catal. 1995, 152, 237.
(36) Costantino, U.; Costantino, F.; Elisei, F.; Latterini, L.;
Nocchetti, M. Phys. Chem. Chem. Phys. 2013, 15, 13254.
́
(37) Gerardin, C.; Kostadinova, D.; Sanson, N.; Coq, B.; Tichit, D.
Chem. Mater. 2005, 17, 6473.
(
(
(
1) Kintisch, E. Science 2005, 310, 1406.
2) Ewing, R. C.; von Hippel, F. N. Science 2009, 325, 151.
3) Kuepper, F. C.; Feiters, M. C.; Olofsson, B.; Kaiho, T.; Yanagida,
S.; Zimmermann, M. B.; Carpenter, L. J.; Luther, G. W.; Lu, Z.;
Jonsson, M. Angew. Chem., Int. Ed. 2011, 50, 11598.
(
4) Saiz-Lopez, A.; Plane, J. M. C.; Baker, A. R.; Carpenter, L. J.; von
Glasow, R.; Martin, J. C. G.; McFiggans, G.; Saunders, R. W. Chem.
Rev. 2012, 112, 1773.
(38) Rives, V.; Angeles Ulibarri, M. Coord. Chem. Rev. 1999, 181, 61.
(39) Fogg, A. M.; Williams, G. R.; Chester, R.; O’Hare, D. J. Mater.
Chem. 2004, 14, 2369.
(
5) Lee, W.; Ojovan, M.; Stennett, M.; Hyatt, N. Adv. Appl. Ceram.
2
006, 105, 3.
(
(
6) Lu, J. Y. Coord. Chem. Rev. 2003, 246, 327.
7) Ten Hoeve, J. E.; Jacobson, M. Z. Energy Environ. Sci. 2012, 5,
(40) Yan, D. P.; Lu, J.; Ma, J.; Qin, S. H.; Wei, M.; Evans, D. G.;
Duan, X. Angew. Chem., Int. Ed. 2011, 50, 7037.
(41) Vialat, P.; Mousty, C.; Taviot-Gueho, C.; Renaudin, G.;
Martinez, H.; Dupin, J. C.; Elkaim, E.; Leroux, F. Adv. Funct. Mater.
2014, 24, 4831.
8
(
743.
8) Garino, T. J.; Nenoff, T. M.; Krumhansl, J. L.; Rademacher, D. X.
J. Am. Ceram. Soc. 2011, 94, 2412.
I
dx.doi.org/10.1021/cm5036997 | Chem. Mater. XXXX, XXX, XXX−XXX