A R T I C L E S
Chan et al.
Scheme 1. Competing CCA and CHA TEMPO Activation
Pathways upon Reaction with 1a
deeper understanding of the metalloradical reactivity of several
RhII and IrII radicals.8-10 A particular unique chemistry concerns
the activation of aliphatic carbon-carbon bonds in a variety of
organic substrates including nitroxyl radicals,10a,b ketones,10c
amides,10d esters,10d and nitriles10e,f by rhodium(II) meso-
tetramesitylporphyrin, [RhII(tmp)] (1).6e
TEMPO (2,2,6,6-tetramethyl-piperidine-1-oxyl) is often used
as a radical inhibitor in various (catalytic) reactions and can
mediate transition metal-catalyzed oxidation reactions. In these
reactions (the oxygen atom of) its nitroxyl radical moiety is
generally believed to be responsible for its actions, and (radical
mediated) decomposition reactions of TEMPO involving its
aliphatic moieties are generally not considered relevant. Con-
sidering the results presented in this paper this assumption is
not always justified.
In this report we focus on providing a deeper mechanistic
understanding of our previously communicated CCA of un-
strained CR3-Cring bonds of cyclic nitroxyl radicals by RhII.10b
We studied in detail the kinetics of the CCA reaction of [Rh-
(tmp)] (1) with TEMPO 2 leading to [RhIII(tmp)Me] (3). In this
process we identified a competing CHA pathway leading to
formation of TEMPOH via [RhIII(tmp)H]. The selectivity of
CCA over CHA increases at higher temperatures. Herein we
disclose a detailed mechanistic picture supported by DFT
calculations.
a Reactions in benzene under a N2 atmosphere at 70 °C for 4 h.
Table 1. Yields of Rh(tmp)Me and TEMPOH
temp
TEMPO
equiv
%
%
%
Rh(tmp)Me:
TEMPOH
entry
°
C
Rh(tmp)Me
TEMPOH
total yield
1
2
3
4
5
6
7
70
70
70
70
50
60
80
1
2
5
20
20
20
20
60
76
80
82
73
76
85
5.7
8.0
9.0
65.7
83.0
89.0
91.3
89.8
88.3
88.9
10.5:1
9.5:1
8.9:1
8.8:1
4.4:1
6.1:1
21.8:1
9.3
16.8
12.3
3.9
Reaction of Rh(tmp) 1 with TEMPO 2 for 4 h gives rise to
formation of [RhIII(tmp)Me] 3 in high yield (Scheme 1, Table
1).10b Careful analysis of the crude reaction mixture by GC-
MS revealed the presence of 2,2,6,6-tetramethyl-piperidin-1-ol
TEMPOH 4, suggestive for a competing reaction. Other organic
coproducts which can be expected to result from these reactions,
such as nitrone 6 and azaoxetane 7, proved too unstable to be
detected by GC-MS or isolated (Scheme 1).11 However, a
closely related analogue of 6 was detected in the reaction of
[RhII(tmp)] with 2,2- dimethyl-5,5-diphenylpyrrolidin-1-oxyl,
yielding 2-methyl-2,5-diphenyl-3,4-dehydronitrone and [RhIII-
(tmp)Me].10b
Increasing the TEMPO/Rh ratio, while keeping all other
reaction conditions identical (70 °C), gives rise to increased
overall yields of both Rh(tmp)Me 3 and TEMPOH 4, but also
decreases the 3/4 ratio. (Table 1, entries 1-4). Increasing the
TEMPO/Rh ratio from 1 to 20 gradually increases the [RhIII-
(tmp)Me] yield from 60 to 82% and the TEMPOH yield from
5.7 to 9.3%. The highest total product yields (92%) were reached
using 20 equiv of TEMPO, although the yields already leveled
off to 89% when using 5 equiv of TEMPO. Using more than 5
equiv TEMPO gives rise to a nearly constant 3/4 ratio of about
8.8.
We observed a clear influence of the temperature on the
relative rates of the two competing pathways (50-80 °C).
Keeping the TEMPO and [RhII(tmp)] concentrations constant
while increasing the temperature results in higher yields of [RhIII-
(tmp)Me] but lower yields of TEMPOH, thus resulting in a
higher 3/4 ratio (Table 1, entries 5, 6, 4, and 7). The total product
yields remained high and ascertained that other side reactions
were minor.
(7) (a) Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem. Soc. 1985,
107, 43333-4335. (b) Chen, M. J.; Rathke, J. W. Organometallics 1994,
13, 4875-4880.
(8) For recent overviews, see: (a) Hetterscheid, D. G. H.; Gru¨tzmacher, H.;
Koekoek, A. J. J.; de Bruin, B. In The Organometallic Chemistry of Rh,
Ir, Pd and Pt Based Radicals; Higher Valent Species; Karlin, K. D., Ed.;
Vol 55; Wiley: 2007, pp 247-354. (b) de Bruin, B.; Hetterscheid, D. G.
H. Eur. J. Inorg. Chem. 2007, 2, 211-230.
(9) (a) Hetterscheid, D. G. H.; Klop, M.; Kicken, R. J. N. A. M.; Smits, J. M.
M.; Reijerse, E. J.; de Bruin, B. Chem. Eur. J. 2007, 13, 3386-3405. (b)
de Bruin, B.; Russcher, J. C.; Gru¨zmacher, H. J. Organomet. Chem. 2007,
692, 3167-3173. (c) Hetterscheid, D. G. H.; de Bruin, B. J. Mol. Catal.
A. Chem., 2006, 251, 291-296. (d) Hetterscheid, D. G. H.; Kaiser, J.;
Reijerse, E. J.; Peters, T. P. J.; Thewissen, S.; Blok, A. N. J.; Smits, J. M.
M.; de Gelder, R.; de Bruin, B. J. Am. Chem. Soc. 2005, 127, 1895-1905.
(e) Hetterscheid, D. G. H.; Bens, M.; de Bruin, B.; Dalton Trans. 2005,
979-984. (f) Knijnenburg, Q.; Horton, A. D.; van der Heijden, H.; Kooistra,
T. M.; Hetterscheid, D. G. H.; Smits, J. M. M.; de Bruin, B.; Budzelaar, P.
H. M.; Gal, A. W. J. Mol. Catal. A. Chem. 2005, 232, 151-159. (g)
Hetterscheid, D. G. H.; Smits, J. M. M.; de Bruin, B. Organometallics.
2004, 23, 4236-4246. (h) de Bruin, B.; Budzelaar, P. H. M.; Gal, A. W.;
Angew. Chem., Int. Ed. 2004, 43, 4142-4157. (i) Hetterscheid, D. G. H.;
de Bruin, B.; Smits, J. M. M.; Gal, A. W. Organometallics 2003, 22, 3022-
3024. (j) de Bruin, B.; Thewissen, S.; Yuen, T.-W.; Peters, T. P. J.; Smits,
J. M. M.; Gal, A. W.; Organometallics 2002, 21, 4312-4314. (k) de Bruin,
B.; Peters, T. P. J.; Thewissen, S.; Blok, A. N. J.; Wilting, J. B. M.; de
Gelder, R.; Smits, J. M. M.; Gal, A. W. Angew. Chem., Int. Ed. 2002, 41,
2135-2138. (l) Willems, S. T. H.; Russcher, J. C.; Budzelaar, P. H. M.;
de Bruin, B.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Chem. Commun.
2002, 148-149.
The formation of TEMPOH and the origin of the hydroxyl
hydrogen in TEMPOH atom is puzzling. It seems most likely
that the reaction proceeds via the hydride intermediate [RhIII-
(tmp)H].12 Rh-H bonds of [RhIII(por)] species are weak (∼60
kcal/mol)6d and can donate their hydrogen atoms easily,12b and
TEMPO is known to react rapidly with [MIII(oep)H] hydride
(11) (a) A more stable diphenyl substituted nitrone co-product analogue of 6
has been isolated; see ref 7. (b) Breuer, E.; Aurich, H. G.; Nielsen, A.
Nitrones, Nitronates and Nitroxides: Wiley & Sons: New York, 1989. (c)
A derivative of azaoxetane 7 has been a proposed, unstable intermediate:
Baldwin, J. E.; Bhatnagar, A. K.; Choi, S. C.; Shortridge, T. J. J. Am.
Chem. Soc. 1971, 93, 4082-4084.
(10) (a) Mak, K. W.; Yeung, S. K.; Chan, K. S. Organometallics 2002, 21,
2362-2364. (b) Tse, M. K.; Chan, K. S. J. Chem. Soc. Dalton Trans. 2001,
510-511. (c) Zhang, L.; Chan, K. S. J. Organomet. Chem. 2006, 691,
3782-3787. (d) Zhang, L.; Chan, K. S. J. Organomet. Chem. 2007, 692,
2021-2027. (e) Chan, K. S.; Li, X. Z.; Fung, C. W.; Zhang, L.
Organometallics 2007, 26, 20-21. (f) Chan, K. S.; Li, X. Z.; Fung, C.
W.; Zhang, L. Organometallics 2007, 26, 2679-2687.
(12) (a) Chan, K. S.; Leung, Y. B. Inorg. Chem. 1994, 33, 3187. (b) Zhang, L.;
Chan, K. S. Organometalllics 2007, 26, 679-684.
9
2052 J. AM. CHEM. SOC. VOL. 130, NO. 6, 2008