indicating that S2À sequesters Pd2+ from the metal–ligand
complex, liberating free Pd-Q1 (S14, ESIw). Thus Pd-Q1 may
be classified as a reversible chemosensor for Pd2+
.
The authors thank CSIR [No. 01(2292)/09/ EMR-II], Govt.
of India for the financial support and Universiti Sains Malaysia
for the Research University Grant (No. 1001/PFIZIK).
Notes and references
1 (a) M. R. Senger, E. P. Rico, M. D. Arizi, A. P. G. Frazzon,
R. D. Dias, M. R. Bogo and C. D. Bonan, Toxicology, 2006,
226, 229; (b) E. M. Nolan and S. J. Lippard, Acc. Chem. Res., 2009,
42, 193; Y. Ding, Y. Xie, X. Li, J. P. Hill, W. Zhang and W. Zhu,
Chem. Commun., 2011, 47, 5431.
2 (a) T. Iwasawa, M. Tokunaga, Y. Obora and Y. Tsuji, J. Am.
Chem. Soc., 2004, 126, 6554; (b) M. Lafrance and K. Fagnou,
J. Am. Chem. Soc., 2006, 128, 16496.
Fig. 4 Fluorescence titration spectra of Pd-Q1 (c = 2.0 Â 10À5 M) in
the presence of Pd2+ (c = 2.0 Â 10À4 M) at pH 7.2. Inset:
Fluorescence response of Pd-Q1 (c = 1.0 Â 10À5 M, lex = 505 nm)
as a function of pH in EtOH-H2O (1 : 1, v/v, 25 1C), pH is adjusted by
using aqueous solutions of 1 M HCl or 1 M NaOH.
3 J. M. Baxter, D. Steinhuebel, M. Palucki and I. W. Davies,
Org. Lett., 2005, 7, 215.
4 (a) S. L. Buchwald, C. Mauger, G. Mignani and U. Scholzc,
Adv. Synth. Catal., 2006, 348, 23; (b) X. Chen, K. M. Engle,
D. H. Wang and J. Q. Yu, Angew. Chem., 2009, 121, 5196.
5 R. K. Arvela, N. E. Leadbeater and M. J. Collins, Tetrahedron,
2005, 61, 9349.
6 S. Rauch, H. F. Hemond, C. Barbante, M. Owari, G. M.
Morrison, B. Peucker-Ehrenbrink and U. Wass, Environ. Sci.
Technol., 2005, 39, 8156.
7 International Programme on Chemical Safety. Palladium;
Environmental Health Criteria Series 226, World Health Organization,
Geneva, 2002.
Fig. 5 (a): Change of emission intensity of Pd-Q1 after adding 5.0 equiv.
of each of the guest cations in EtOH–H2O (1 : 1, v/v, 25 1C) at 562 nm.
(b) Colored emission observed for Pd-Q1 during titration with Pd2+
.
8 (a) C. Locatelli, D. Melucci and G. Torsi, Anal. Bioanal. Chem.,
2005, 382, 1567; (b) K. V. Meel, A. Smekens, M. Behets,
P. Kazandjian and R. V. Grieken, Anal. Chem., 2007, 79, 6383.
9 (a) D. Kalny, A. M. Albrecht-Gary and J. Havel, Anal.
Chim. Acta, 2001, 439, 101; (b) R. J. T. Houk, K. J. Wallace,
H. S. Hewage and E. V. Anslyn, Tetrahedron, 2008, 64, 8271.
10 (a) A. Tamayo, L. Escriche, J. Casabo, B. Covelo and C. Lodeiro,
Eur. J. Inorg. Chem., 2006, 2997; (b) J. R. Matthews, F. Goldoni,
H. Kooijman, A. L. Spek, A. P. H. J. Schenning and E. W. Meijer,
Macromol. Rapid Commun., 2007, 28, 1809; (c) L. P. Duan, Y. F. Xu
and X. H. Qian, Chem. Commun., 2008, 6339; (d) B. Liu, Y. Bao,
F. Du, H. Wang, J. Tian and R. Bai, Chem. Commun., 2011, 47, 1731.
11 (a) A. L. Garner and K. Koide, Chem. Commun., 2009, 86;
(b) A. L. Garner, F. L. Song and K. Koide, J. Am. Chem. Soc.,
2009, 131, 5163; (c) M. E. Jun and K. H. Ahn, Org. Lett., 2010,
12, 2790; (d) M. Santra, S.-K. Ko, I. Shin and K. H. Ahn, Chem.
Commun., 2010, 46, 3964; (e) B. Tang, H. Zhang and Y. Wang,
To further explore the selectivity of Pd-Q1 for Pd2+
,
competition experiments are performed in the presence of
Pd2+ mixed with 6.0 equiv. of each of the guest cations viz.
Zn2+, Cd2+, Hg2+, Pb2+, Ni2+, Co2+, Fe3+, Cu2+, Pt2+
and Ru3+ respectively. While some metal ions, especially Cu2+
,
Pt2+ and Ru3+ bound to Pd-Q1, the addition of 1.5 equiv. of
Pd2+ displaces most of them (Fig. 6). Thus these free cations
would have very little influence towards Pd-Q1 and do not
hamper the fluorogenic detection of Pd2+
.
Although for Pd-N1 a similar increase in emission intensity
is observed, the fluorescence enhancement is less compared to
Pd-Q1 during addition of Pd2+ (S13, ESIw). This again proves
the 8-aminoquinoline mediated amplification of the fluorescence
signal of Pd-Q1. Hence, a smaller CHEF effect is observed for
Anal. Lett., 2004, 37, 1219; (f) T. Schwarze, H. Muller, C. Dosche,
¨
T. Klamroth, W. Mickler, A. Kelling, H. G. Lc¸ hmannsrc¸ ben,
P. Saalfrank and H. J. Holdt, Angew. Chem., 2007, 119, 1701;
(g) H. L. Li, J. L. Fan, F. L. Zhu, H. Song, J. J. Du, S. G. Sun,
X. J. Liu and X. J. Peng, Chem.–Eur. J., 2010, 16, 12349;
(h) T. Schwarze, C. Dosche, R. Flehr, T. Klamroth, H. G.
Pd-N1 compared to Pd-Q1 in the presence of Pd2+
.
The reversibility of the Pd2+ complexation process as proposed
in Scheme 2 is confirmed after adding an excess amount of S2À
to the colored solution of the metal–ligand complex. The pink
colored solution turns colorless and the fluorescence is quenched,
Lohmannsroben, P. Saalfrank, E. Cleve, H. J. Buschmann and
¨
H.-J. Holdt, Chem. Commun., 2010, 46, 2034.
¨
12 (a) H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Y. Yoon,
Chem. Soc. Rev., 2008, 37, 1465; (b) S.-K. Ko, Y.-K. Yang, J. Tae
and I. Shin, J. Am. Chem. Soc., 2006, 128, 14150; (c) X. Chen,
S.-W. Nam, M.-J. Jou, Y. Kim, S.-J. Kim, S. Park and J. Yoon,
Org. Lett., 2008, 10, 5235; (d) M. G. Yu, M. Shi, Z. G. Chen,
F. Y. Li, X. X. Li, Y. H. Gao, J. Xu, H. Yang, Z. G. Zhou, T. Yi
and C. H. Huang, Chem.–Eur. J., 2008, 14, 6892; (e) J. J. Du,
J. L. Fan, X. J. Peng, P. P. Sun, J. Y. Wang, H. L. Li and S. G. Sun,
Org. Lett., 2010, 12, 476; (f) O. A. Egorova, H. W. Seo,
A. Chatterjee and K. H. Ahn, Org. Lett., 2010, 12, 401;
(g) M. J. Kim, K. M. K. Swamy, K. M. Lee, A. R. Jagdale,
Y. Kim, S. -J. Kim, K. H. Yoo and J. Yoon, Chem. Commun.,
2009, 7215; (h) H. N. Kim, S.-W. Nam, K. M. K. Swamy, Y. Jin,
X. Chen, Y. Kim, S.-J. Kim, S. Park and J. Yoon, Analyst, 2011,
136, 1339; (i) Z.-Q. Hu, C.-S. Lin, X.-M. Wang, L. Ding, C.-L. Cui,
S.-F. Liu and H. Y. Lu, Chem. Commun., 2010, 46, 3765.
Fig. 6 Mn+-selectivity profile of Pd-Q1: (grey bars) change of emission
intensity of Pd-Q1 + 6 equiv. Mn+; (black bars) change of emission
intensity of Pd-Q1 + 6 equiv. Mn+, followed by 1.5 equiv. Pd2+
.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9101–9103 9103