Page 7 of 9
Green Chemistry
Please do not adjust margins
Journal Name
ARTICLE
There are no conflicts to declare.
formaldehyde solution at room temperaDtuOrIe: .10I.1n0t3.V9ieJ/wD. 0AHrGtyiCcdle0r1Oo4ng1lei2nnEe
Energy. 2008, 33, 2225-2232.
(15) Enthaler, S.; von Langermann, J.; Schmidt, T. Carbon dioxide and
formic acid-the couple for environmental-friendly hydrogen storage?
Energy Environ. Sci. 2010, 3, 1207-1217.
(16) Brown, M.; Parkyns, N. Progress in the partial oxidation of
methane to methanol and formaldehyde. Catal. Today. 1991, 8, 305-
335.
(17) Bahmanpour, A. M.; Hoadley, A.; Tanksale, A. Critical review and
exergy analysis of formaldehyde production processes. Rev. Chem.
Eng. 2014, 30, 583-604.
(18) Tijm, P.; Waller, F.; Brown, D. Methanol technology
developments for the new millennium. Appl. Catal. A-Gen. 2001, 221,
275-282.
(19) Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.;
Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in
the greener production of formates/formic acid, methanol, and DME
by heterogeneously catalyzed CO2 hydrogenation processes. Chem.
Rev. 2017, 117, 9804-9838.
Acknowledgements
We acknowledge the financial support of this work by National
Science Foundation (1665265).
The authors are grateful to Dr. Andrew Knoll at the National
Polymer Innovation Center (NPIC) in University of Akron with the
assistance of XPS. We are also grateful to Dr. Lingyan Li in National
Center for Education and Research on Corrosion and Materials
Performance (NCERAMP) at the University of Akron for the
assistance of SEM analyses, and Mr. Thomas J. Quick in
Geosciences Department at the University of Akron for the
assistance of XRD. The HRTEM test was taken at the (cryo)TEM
facility at the Liquid Crystal Institute, Kent State University,
supported by the Ohio Research Scholars Program Research
Cluster on Surfaces in Advanced Materials. The authors thank Dr.
Min Gao for technical support with the TEM experiments.
(20) Tang, X.; Bai, Y.; Duong, A.; Smith, M. T.; Li, L.; Zhang, L.
Formaldehyde in China: production, consumption, exposure levels,
and health effects. Environ. Int. 2009, 35, 1210-1224.
(21) Gerberich, H. R.; Seaman, G. C.; Staff, U. b. Formaldehyde. Kirk-
Othmer Encyclopedia of Chemical Technology. 2000, 1-22.
(22) Bahmanpour, A. M.; Hoadley, A.; Tanksale, A. Formaldehyde
production via hydrogenation of carbon monoxide in the aqueous
phase. Green Chem. 2015, 17, 3500-3507.
(23) Bahmanpour, A. M.; Hoadley, A.; Mushrif, S. H.; Tanksale, A.
Hydrogenation of carbon monoxide into formaldehyde in liquid
media. ACS Sustain. Chem. Eng. 2016, 4, 3970-3977.
(24) Sun, G.; Zhao, Z.-J.; Mu, R.; Zha, S.; Li, L.; Chen, S.; Zang, K.; Luo,
J.; Li, Z.; Purdy, S. C. Breaking the scaling relationship via thermally
stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat.
Comm. 2018, 9, 4454.
(25) Fernández, E. M.; Moses, P. G.; Toftelund, A.; Hansen, H. A.;
Martínez, J. I.; Abild-Pedersen, F.; Kleis, J.; Hinnemann, B.; Rossmeisl,
J.; Bligaard, T. Scaling relationships for adsorption energies on
transition metal oxide, sulfide, and nitride surfaces. Angew. Chem.
Int. Ed. 2008, 47, 4683-4686.
(26) Hong, X.; Chan, K.; Tsai, C.; Nørskov, J. K. How doped MoS2
breaks transition-metal scaling relations for CO2 electrochemical
reduction. ACS Catal. 2016, 6, 4428-4437.
(27) Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. A direct grain-boundary-
activity correlation for CO electroreduction on Cu nanoparticles. ACS
Central Sci. 2016, 2, 169-174.
(28) Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon
monoxide to liquid fuel on oxide-derived nanocrystalline copper.
Nature. 2014, 508, 504.
(29) Luc, W.; Fu, X.; Shi, J.; Lv, J.-J.; Jouny, M.; Ko, B. H.; Xu, Y.; Tu, Q.;
Hu, X.; Wu, J. Two-dimensional copper nanosheets for
electrochemical reduction of carbon monoxide to acetate. Nat.
Catal. 2019, 2, 423.
(30) Zhang, H.; Chang, X.; Chen, J. G.; Goddard, W. A.; Xu, B.; Cheng,
M.-J.; Lu, Q. Computational and experimental demonstrations of
one-pot tandem catalysis for electrochemical carbon dioxide
reduction to methane. Nat. Comm. 2019, 10, 3340.
(31) Ma, Z.; Porosoff, M. D. Development of tandem catalysts for CO2
hydrogenation to olefins. ACS Catal. 2019, 9, 2639-2656.
(32) Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R.
Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2
References
(1) Acres, G. J. Recent advances in fuel cell technology and its
applications. J. Power Sources. 2001, 100, 60-66.
(2) Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress
in material selection for solid oxide fuel cell technology: A review.
Prog. Mater. Sci. 2015, 72, 141-337.
(3) Schlapbach, L. Technology: Hydrogen-fuelled vehicles. Nature.
2009, 460, 809.
(4) Sharaf, O. Z.; Orhan, M. F. An overview of fuel cell technology:
Fundamentals and applications. Renew. Sustain. Energy Rev. 2014,
32, 810-853.
(5) McWhorter, S.; Read, C.; Ordaz, G.; Stetson, N. Materials-based
hydrogen storage: attributes for near-term, early market PEM fuel
cells. Curr. Opin. Solid. State. Mater. Sci. 2011, 15, 29-38.
(6) Demirci, U. B.; Miele, P. Chemical hydrogen storage: ‘material’
gravimetric capacity versus ‘system’gravimetric capacity. Energy
Environ. Sci. 2011, 4, 3334-3341.
(7) Teichmann, D.; Arlt, W.; Wasserscheid, P.; Freymann, R. A future
energy supply based on Liquid Organic Hydrogen Carriers (LOHC).
Energy Environ. Sci. 2011, 4, 2767-2773.
(8) Teichmann, D.; Arlt, W.; Wasserscheid, P. Liquid Organic
Hydrogen Carriers as an efficient vector for the transport and storage
of renewable energy. Int. J. Hydrogen Energy. 2012, 37, 18118-
18132.
(9) Eberle, U.; Felderhoff, M.; Schueth, F. Chemical and physical
solutions for hydrogen storage. Angew. Chem. Int. Ed. 2009, 48,
6608-6630.
(10) Onishi, N.; Laurenczy, G.; Beller, M.; Himeda, Y. Recent progress
for reversible homogeneous catalytic hydrogen storage in formic
acid and in methanol. Coordin. Chem. Rev. 2018, 373, 317-332.
(11) Heim, L. E.; Konnerth, H.; Prechtl, M. H. Future perspectives for
formaldehyde: pathways for reductive synthesis and energy storage.
Green Chem. 2017, 19, 2347-2355.
(12) Heim, L. E.; Schlörer, N. E.; Choi, J.-H.; Prechtl, M. H. Selective
and mild hydrogen production using water and formaldehyde. Nat.
Comm. 2014, 5, 3621.
(13) Palo, D. R.; Dagle, R. A.; Holladay, J. D. Methanol steam
reforming for hydrogen production. Chem. Rev. 2007, 107, 3992-
4021.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins