In connection with the foregoing, many studies of H-atom
•
abstraction make use of tBuO , or the structurally related
•
•
cumyloxyl radical (C
6 5 3 2
H C(CH ) O , CumO ), as a general
1
1
model for alkoxyl and other oxygen centered radicals.
However, the structure of the alkoxyl radical itself is also
of critical importance to the kinetics of H abstraction
reactions. For example, recent studies of Tanko and co-
workers on H-atom abstraction from the R-C-H groups of
and dibenzyl peroxide, respectively (eq 1). In MeCN solution,
•
•
CumO and BnO are characterized by a broad absorption
band in the visible region centered at 485 and 460 nm,
•
tertiary amines by tBuO indicate that, in solution, most of
1
1a
these processes are entropy controlled. In other words,
the alkoxyl radical is so reactive toward these substrates that
the rates are largely governed by the orientation of the
reactants and accessibility to the H-atom, rather than by the
strength of the C-H bond. It can be concluded from this
work that alkoxyl radical structure, viz., steric bulk, will have
a significant effect on the rate constants for these reactions.
We are therefore surprised by the scarcity of kinetic data
associated with H-abstraction reactions of unhindered alkoxyl
radicals, especially in light of their relevance in biological
and chemical processes.
2
6,27
•
respectively.
mainly by C-CH
mainly attributed to H-atom abstraction from the solvent.
Under these conditions, CumO decays
2
4,27
•
3
ꢀ-scission,
while BnO decay can be
28,29
PhC(CH3)
2
hv
•
R )
RO-OR 266nm8 2 RO
(1)
PhCH2
A number of rate constants (k ) for H-atom abstraction
H
0,23,30,31
2
10b,11b,32,33
•
from a CH group of CHD,
DABCO
2
0b,11a,32,33
TEA,
and
1
•
(eq 2), by tBuO and/or CumO , are
The purpose of the present study is to develop an
understanding of the reactivity of an unhindered alkoxyl, the
available in the literature (see Table 1).
•
•
6 5 2
benzyloxyl radical (C H CH O , BnO ). To this end, we have
kH
9
•
•
RO + H CR′R′′
8 ROH + HCR′R′′
(2)
carried out a time-resolved kinetic study on the H-abstraction
2
•
reactions from carbon by BnO , with comparisons to the more
•
hindered CumO using laser flash photolysis (LFP). A variety
Our kinetic studies were carried out by following the decay
of H-atom donors, viz., 1,4-cyclohexadiene (CHD), triethy-
lamine (TEA), triethylamine-d15 (TEA-d15), triisobutylamine
•
•
of the CumO and BnO visible absorption bands at 490 and
60 nm, respectively, as a function of the H-atom donor
4
(
TIBA), and 1,4-diazabicyclo[2,2,2]octane (DABCO), were
concentration. The observed rate constants (kobs) gave excel-
lent linear relationships when plotted against substrate
concentration and provided the second-order rate constants
used in this work, the structures for which are displayed
below. Computational modeling provides additional insights
•
into some details of the BnO reaction kinetics.
•
•
•
for H-atom abstraction from the substrates by CumO and
CumO and BnO were generated by 266 nm LFP of N
2
-
•
•
H
BnO (k ). Plots for H-atom abstraction reactions by CumO
saturated MeCN solutions (T ) 25 °C) containing dicumyl
•
and BnO from the H-atom donors are displayed in the
Supporting Information (SI, Figures S2-S7). All kinetic data
are collected in Table 1 and are in reasonable agreement
(
12) Font-Sanchis, E.; Aliaga, C.; Bejan, E. V.; Cornejo, R.; Scaiano,
J. C. J. Org. Chem. 2003, 68, 3199–3204.
13) Correia, C. F.; Borges dos Santos, R. M.; Est a´ cio, S. G.; Telo, J. P.;
Costa Cabral, B. J.; Martinho Sim o˜ es, J. A. ChemPhysChem 2004, 5, 1217–
221.
14) (a) Snelgrove, D. W.; Lusztyk, J.; Banks, J. T.; Mulder, P.; Ingold,
(
(where comparison is possible) with available literature
•
•
values for analogous reactions with tBuO and/or CumO .
1
•
•
(
The k
H
values for reactions involving tBuO and CumO
K. U. J. Am. Chem. Soc. 2001, 123, 469–477. (b) MacFaul, P. A.; Ingold,
K. U.; Lusztyk, J. J. Org. Chem. 1996, 61, 1316–1321. (c) Valgimigli, L.;
Banks, J. T.; Ingold, K. U.; Lusztyk, J. J. Am. Chem. Soc. 1995, 117, 9966–
•
•
are rather similar, viz., k
H H
(tBuO )/k (CumO ) ) 0.7 to 1.7.
This reflects the well-established similar reactivity displayed
by these two radicals in H-atom abstraction reactions,
9
971.
15) Das, P. K.; Encinas, M. V.; Steenken, S.; Scaiano, J. C. J. Am.
Chem. Soc. 1981, 103, 4162–4166.
16) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Valgimigli, L.; Gigmes,
D.; Tordo, P. J. Am. Chem. Soc. 1999, 121, 11546–11553.
17) Kim, S. S.; Kim, S. Y.; Ryou, S. S.; Lee, C. S.; Yoo, K. H. J. Org.
Chem. 1993, 58, 192–196.
18) (a) Lalev e´ e, J.; Allonas, X.; Fouassier, J. P. J. Org. Chem. 2007,
2, 6434–6439. (b) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188–194.
19) Chatgilialoglu, C.; Ingold, K. U.; Lusztyk, J.; Nazran, A. S.;
Scaiano, J. C. Organometallics 1983, 2, 1332–1335.
14c,34,35
(
(
(26) Avila, D. V.; Ingold, K. U.; Di Nardo, A. A.; Zerbetto, F.; Zgierski,
M. Z.; Lusztyk, J. J. Am. Chem. Soc. 1995, 117, 2711–2718
(27) Baciocchi, E.; Bietti, M.; Salamone, M.; Steenken, S. J. Org. Chem.
2002, 67, 2266–2270
(28) Konya, K. G.; Paul, T.; Lin, S.; Lusztyk, J.; Ingold, K. U. J. Am.
Chem. Soc. 2000, 122, 7518–7527
.
(
.
(
7
.
•
(
(29) BnO undergoes a rapid 1,2-H-atom shift reaction in water and
alcohols (see ref 28). Accordingly, in MeCN its decay can be accelerated
by the presence of small amounts of water.
(
20) Koner, A. L.; Pischel, U.; Nau, W. M. Org. Lett. 2007, 9, 2899–
2
902.
(30) Effio, A.; Griller, D.; Ingold, K. U.; Scaiano, J. C.; Sheng, S. J.
(
21) Bietti, M.; Salamone, M. Org. Lett. 2010, 12, 3654–3657.
J. Am. Chem. Soc. 1980, 102, 6063–6068
(31) Paul, H.; Small, R. D., Jr.; Scaiano, J. C. J. Am. Chem. Soc. 1978,
100, 4520–4527
(32) Lalev e´ e, J.; Graff, B.; Allonas, X.; Fouassier, J. P. J. Phys. Chem.
A 2007, 111, 6991–6998
(33) Griller, D.; Howard, J. A.; Marriott, P. R.; Scaiano, J. C. J. Am.
Chem. Soc. 1981, 103, 619–623
.
(22) Aliaga, C.; Stuart, D. R.; Asp e´ e, A.; Scaiano, J. C. Org. Lett. 2005,
7
, 3665–3668.
23) Wayner, D. D. M.; Lusztyk, J.; Pag e´ , D.; Ingold, K. U.; Mulder,
P.; Laarhoven, L. J. J.; Aldrich, H. S. J. Am. Chem. Soc. 1995, 117, 8131–
144.
24) Avila, D. V.; Brown, C. E.; Ingold, K. U.; Lusztyk, J. J. Am. Chem.
Soc. 1993, 115, 466–470.
25) (a) Mayer, J. M. Acc. Chem. Res. 2010, DOI: 10.1021/ar100093z.
b) Warren, J. J.; Mayer, J. M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
282–5287.
.
(
.
8
(
.
(34) Sheeller, B.; Ingold, K. U. J. Chem. Soc., Perkin Trans. 2 2001,
(
480–486
.
(
5
(35) Baign e´ e, A.; Howard, J. A.; Scaiano, J. C.; Stewart, L. C. J. Am.
Chem. Soc. 1983, 105, 6120–6123.
Org. Lett., Vol. 13, No. 2, 2011
261