to room temp. over 24 h. Maple crystals were collected and washed with
water and acetone. Yield: y20% based on DCA. Anal. Calc. for
C48H34Zn7N24O9 (1548.58): C 37.23, H 2.21, N 21.71%; found: C 37.51,
H 2.02, N 21.95%.
§ Crystal data for 1: C48H34Zn7N24O9, Mr = 1548.58; trigonal; space group
3
¯
˚
˚
R3c; a = b = 13.934(2), c = 48.052(10) A; V = 8080(2) A ; Z = 6; Dc =
1.910 g cm23; T = 293 K; reflections collected/unique = 24129/2065; R1 =
0.0507, wR2 = 0.1109 (I . 2s(I)); R1 = 0.0785, wR2 = 0.1231 (all data) and
GOF = 1.044. CCDC 625275. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b615675d
1 For examples: (a) S. R. Batten and R. Robson, Angew. Chem., Int. Ed.,
1998, 37, 1460; (b) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig,
H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705; (c)
S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43,
2334; (d) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and
M. J. Rosseinsky, Acc. Chem. Res., 2005, 38, 273; (e) R. J. Hill,
D.-L. Long, N. R. Champness, P. Hubberstey and M. Schro¨der, Acc.
Chem. Res., 2005, 38, 335; (f) G. Fe´rey, C. Mellot-Draznieks, C. Serre
and F. Millange, Acc. Chem. Res., 2005, 38, 217.
Fig. 4 Solid-state photoluminescent spectra of 1 (inset, lifetime).
2 M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe
and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319.
3 For examples: (a) X.-J. Zheng, L.-P. Jin and S. Gao, Inorg. Chem., 2004,
43, 1600; (b) E. Y. Lee, S. Y. Jang and M. P. Suh, J. Am. Chem. Soc.,
2005, 127, 6374; (c) X.-L. Wang, C. Qin, E.-B. Wang, Z.-M. Su, L. Xu
and S. R. Batten, Chem. Commun., 2005, 4789; (d) N. G. Amatas,
E. Burkholder and J. Zubieta, J. Solid State Chem., 2005, 178, 2430; (e)
C. Livage, N. Guillou, P. R. Chaigneau, M. Drillon and G. Fe´rey,
Angew. Chem., Int. Ed., 2005, 44, 6488; (f) C. A. Williams, A. J. Blake,
P. Hubberstey and M. Schro¨der, Chem. Commun., 2005, 5435; (g)
P. Horcajada, C. Serre, M. Vallet-Reg´ı, M. Sebban, F. Taulelle and
G. Fe´rey, Angew. Chem., Int. Ed., 2006, 45, 5974; (h) L. Pan,
D. H. Olson, L. R. Ciemnolonski, R. Heddy and J. Li, Angew.
Chem., Int. Ed., 2006, 45, 616.
(Fig. 5S, ESI{). In the absorption spectra of 1, there are two clear
absorption peaks centered at 236 and 372 nm, corresponding to
the K- and B-band, respectively, which essentially matched the
absorptions of DCA (Fig. 6S, ESI{), although narrowed. Thus,
the characteristic B-band absorption of 1 should be assigned as the
intra-ligand p A p* transition in the anthracene ring of the ligand
DTA22. In addition, 1 exhibits intense blue photoluminescence
with an emission maximum at 483 nm upon excitation at 396 nm
(Fig. 4), which is different (and stronger) from that of DCA in
emission position (Fig. 7S, ESI{). This emission is assignable as a
pL* A pL transition since the heteroatoms of the heterocyclic
aromatic ligand will have decreased p and p* orbital energies (the
HOMO and LUMO, as well as orbitals with energies close to
these, may not be significantly contributed by the d10 metal atoms,
so that LMCT can be excluded from consideration11). The
enhancement of luminescence may be attributed to the ligand
chelation to the metal center, which effectively increases the rigidity
and asymmetry of the ligand and reduces the loss of energy by
radiationless decay. The lifetime of the 483 nm peak was measured
as 4.042 ns (Fig. 4), suggesting that this compound may be an
excellent candidate for potential photoactive materials.
In summary, we have obtained a 3D ZnII complex by using a
di-tetrazolate ligand with a bulky spacer. It shows a pcu-type
network topology with an unprecedented heptanuclear spindle
[Zn7(OH)8]6+ cluster as secondary building units, and has strong
luminescent emission with long lifetime. Further work is being
focused on using other tetrazole ligands to construct MOFs.
We thank Dr Xi Liu and Prof. Guo-Cong Guo for measuring
the optical diffuse reflectance, Dr Qiang Wu and Prof. Li-Juan
Zhao for measuring the luminescent lifetime, and Prof. Guang-She
Li for measuring the transport properties of 1. This work was
supported by the NSFC (No. 20225101, 20373028 and 20531040).
4 Q.-R. Fang, G.-S. Zhu, Z. Jin, M. Xue, X. Wei, D.-J. Wang and
S.-L. Qiu, Angew. Chem., Int. Ed., 2006, 45, 6126.
5 For examples: (a) L. Carlucci, G. Ciani and D. M. Proserpio, Angew.
Chem., Int. Ed., 1999, 38, 3488; (b) R.-G. Xiong, X. Xue, H. Zhao,
X.-Z. You, B. F. Abrahams and Z. Xue, Angew. Chem., Int. Ed., 2002,
41, 3800; (c) A. F. Stassen, M. Grunert, A. M. Mills, A. L. Spek,
J. G. Haasnoot, J. Reedijk and W. Linert, Dalton Trans., 2003, 3628; (d)
J. Tao, Z.-J. Ma, R.-B. Huang and L.-S. Zheng, Inorg. Chem., 2004, 43,
6133; (e) C. Jiang, Z. Yu, C. Jiao, S. Wang, J. Li, Z. Wang and Y. Cui,
Eur. J. Inorg. Chem., 2004, 4669; (f) T. T. Luo, H. L. Tsai, S. L. Yang,
Y. H. Liu, R. D. Dayal Yadav, C. C. Su, C. H. Ueng, L. G. Lin and
K. L. Lu, Angew. Chem., Int. Ed., 2005, 44, 6063; (g) Q. Ye, Y.-H. Li,
Y.-M. Song, X.-F. Huang, R.-G. Xiong and Z. Xue, Inorg. Chem.,
2005, 44, 3618; (h) X.-S. Wang, Y.-Z. Tang, X.-F. Huang, Z.-R. Qu,
C.-M. Che, P. W. H. Chan and R.-G. Xiong, Inorg. Chem., 2005, 44,
5278; (i) T. Wu, B.-H. Yi and D. Li, Inorg. Chem., 2005, 44, 4130; (j)
M. Dinca˘, A. F. Yu and J. R. Long, J. Am. Chem. Soc., 2006, 128, 8904;
(k) Q. Ye, Y.-M. Song, G.-X. Wang, K. Chen, D.-W. Fu, P. W.
Hong Chan, J.-S. Zhu, S. D. Huang and R.-G. Xiong, J. Am. Chem.
Soc., 2006, 128, 6554; (l) X. He, C.-Z. Lu and D.-Q. Yuan, Inorg.
Chem., 2006, 45, 5760.
6 M. O’Keeffe and B. G. Hyde, Crystal Structures I: Patterns and
Symmetry, Mineralogical Society of America, Washington, DC, 1996.
7 X.-M. Zhang, Coord. Chem. Rev., 2005, 249, 1201.
8 W. T. A. Harrison and M. L. F. Phillips, Chem. Mater., 1997, 9, 1837.
9 A. Waheed, R. A. Jones, J. McCarty and X. Yang, Dalton Trans., 2004,
3840, and references therein.
10 A. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley-Interscience,
New York, 1977.
11 (a) K. Balasubramanian, Relativistic Effects in Chemistry. Part A:
Theory and Techniques; Part B: Applications, Wiley, New York, 1997;
(b) B. Valeur, Molecular Fluorescence: Principles and Applications,
Wiley-VCH, Weinheim, 2002; (c) S.-L. Zheng, J.-P. Zhang, X.-M. Chen,
Z.-L. Huang, Z.-Y. Lin and W.-T. Wong, Chem.-Eur. J., 2003, 9, 3888;
(d) S.-L. Zheng, J.-H. Yang, X.-L. Yu, X.-M. Chen and W.-T. Wong,
Inorg. Chem., 2004, 43, 830.
Notes and references
{ Synthesis of {[Zn7(OH)8(DTA)3]?H2O}n (1): A mixture of DCA (23 mg,
0.1 mmol), NaN3 (26 mg, 0.4 mmol) and ZnCl2 (55 mg, 0.4 mmol) in 10 mL
of H2O–EtOH (2 : 1) was sealed in a Teflon-lined stainless autoclave and
heated to 160 uC for 12 h, held at this temperature for 36 h, and then cooled
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 1527–1529 | 1529