B. Li, P. Chiu
FULL PAPER
Kang, M. Mba, F. D. Toste, Science 2007, 317, 496–499; c) S.
Mukherjee, B. List, J. Am. Chem. Soc. 2007, 129, 11336–11337;
d) G. L. Hamilton, T. Kanai, F. D. Toste, J. Am. Chem. Soc.
2008, 130, 14984–14986; e) C. Li, C. Wang, B. Villa-Marcos, J.
Xiao, J. Am. Chem. Soc. 2008, 130, 14450–14451; f) X. Wang,
B. List, Angew. Chem. 2008, 120, 1135; Angew. Chem. Int. Ed.
2008, 47, 1119–1122; g) C. Li, B. Villa-Marcos, J. Xiao, J. Am.
Chem. Soc. 2009, 131, 6967–6969; h) S. Liao, B. List, Angew.
Chem. 2010, 122, 638; Angew. Chem. Int. Ed. 2010, 49, 628–
631.
a) P. J. Cox, W. Wang, V. Snieckus, Tetrahedron Lett. 1992, 33,
2253–2256; b) K. Maruoka, N. Murase, H. Yamamoto, J. Org.
Chem. 1993, 58, 2938–2939; c) P. Kratky, U. Haslinger, M.
Widhalm, Monatsh. Chem. 1998, 129, 1319–1327; d) K. B. Si-
monsen, K. V. Gothelf, K. A. Jørgensen, J. Org. Chem. 1998,
63, 7536–7538; e) P. Wipf, J.-K. Jung, J. Org. Chem. 2000, 65,
6319–6337; f) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, An-
gew. Chem. 2004, 116, 1592; Angew. Chem. Int. Ed. 2004, 43,
1566–1568; g) T. R. Wu, L. Shen, J. M. Chong, Org. Lett. 2004,
6, 2701–2704; h) T. Akiyama, H. Morita, J. Itoh, K. Fuchibe,
Org. Lett. 2005, 7, 2583–2585; i) R. I. Storer, D. E. Carrera, Y.
Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84–86;
j) M. Yamanaka, J. Itoh, K. Fuchibe, T. Akiyama, J. Am.
Chem. Soc. 2007, 129, 6756–6764; k) M. Hatano, T. Ikeno, T.
Matsumura, S. Torii, K. Ishihara, Adv. Synth. Catal. 2008, 350,
1776–1780.
a) D. S. Lingenfelter, R. C. Helgeson, D. J. Cram, J. Org. Chem.
1981, 46, 393–406; b) S. S. Zhu, D. R. Cefalo, D. S. La, J. Y.
Jamieson, W. M. Davis, A. H. Hoveyda, R. R. Schrock, J. Am.
Chem. Soc. 1999, 121, 8251–8259; c) W. C. P. Tsang, R. R.
Schrock, A. H. Hoveyda, Organometallics 2001, 20, 5658–5669;
d) D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356–
5357; e) M. Rueping, E. Sugiono, C. Azap, T. Theissmann, M.
Bolte, Org. Lett. 2005, 7, 3781–3783; f) X. Cheng, R. Goddard,
G. Buth, B. List, Angew. Chem. 2008, 120, 5157; Angew. Chem.
Int. Ed. 2008, 47, 5079–5081; g) C. H. Cheon, H. Yamamoto,
J. Am. Chem. Soc. 2008, 130, 9246–9247.
a) H. Furuno, T. Hayano, T. Kambara, Y. Sugimoto, T. Hana-
moto, Y. Tanaka, Y. Z. Jin, T. Kagawab, J. Inanaga, Tetrahe-
dron 2003, 59, 10509–10523; b) H. Furuno, T. Kambara, Y.
Tanaka, T. Hanamoto, T. Kagawab, J. Inanaga, Tetrahedron
Lett. 2003, 44, 6129–6132; c) K. Shen, X. Liu, Y. Cai, L. Lin,
X. Feng, Chem. Eur. J. 2009, 15, 6008–6014.
7.8 Hz, 2 H), 1.68–1.63 (m, 2 H), 1.32–1.24 (m, 18 H), 0.87 (t, J =
6.8 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.5, 153.1,
152.2, 139.0, 132.2, 131.7, 131.3, 130.8, 130.7, 130.5, 129.8, 129.4,
127.1, 126.3, 124.0, 119.1, 118.0, 117.8, 111.7, 110.2, 35.9, 32.1,
31.6, 29.8, 29.8, 29.7, 29.7, 29.5, 29.5, 22.8, 14.3 ppm. IR (KBr): ν
˜
= 3526, 2932, 2854, 1597, 1504, 1358, 1265, 1180, 895, 748 cm–1.
HRMS: calcd. for C32H37O2Br [M]+ 532.1977; found 532.1971.
(R)-18a:[25] White solid. [α]2D0 = +115.4 (c = 0.14, CH2Cl2) {ref.[25]
1
[α]3D0.5 = +132.0 (c = 1.18, CHCl3)}. H NMR (400 MHz, CDCl3):
[11]
δ = 8.03 (br. s, 1 H), 7.99 (d, J = 8.9 Hz, 1 H), 7.94–7.89 (m, 2 H),
7.74–7.72 (m, 2 H), 7.52–7.47 (m, 2 H), 7.43–7.35 (m, 4 H), 7.34–
7.29 (m, 2 H), 7.23 (d, J = 8.3 Hz, 1 H), 7.16 (d, J = 8.4 Hz, 1 H)
ppm. 13C NMR (100 MHz, CDCl3): δ = 152.8, 150.4, 137.5, 133.6,
133.1, 131.6, 131.5, 130.8, 129.7, 129.6, 128.6, 128.6, 128.6, 128.0,
127.6, 124.5, 124.4, 124.3, 124.1, 117.9, 111.9, 111.6 ppm. HRMS
(EI+): calcd. for C26H18O2 [M]+ 362.1307; found 362.1297.
Acknowledgments
This work was supported by the University of Hong Kong and by
the Research Grants Council of the Hong Kong SAR, P. R. China
(General Research Fund 7081/07P, Collaborative Research Fund
HKU1/CRF/08).
[12]
[1] For reviews, see: a) T. Akiyama, J. Itoh, K. Fuchibe, Adv.
Synth. Catal. 2006, 348, 999–1010; b) T. Akiyama, Chem. Rev.
2007, 107, 5744–5758.
[2] For reviews, see: a) M. Terada, Chem. Commun. 2008, 4097–
4112; b) M. Terada, Bull. Chem. Soc. Jpn. 2010, 83, 101–119.
[3] For reviews, see: a) A. Zamfir, S. Schenker, M. Freund, S. B.
Tsogoeva, Org. Biomol. Chem. 2010, 8, 5262–5276; b) H. Yam-
amoto, C. H. Cheon in Catalytic Asymmetric Synthesis, 3rd ed.
(Ed.: I. Ojima), Wiley, New York, 2010, pp. 119–161.
[4] M. C. Pirrung, J. Zhang, Tetrahedron Lett. 1992, 33, 5987–
5990.
[5] a) N. McCarthy, M. A. McKervey, T. Ye, Tetrahedron Lett.
1992, 33, 5983–5986; b) N. Pierson, C. Fernández-Garcia,
M. A. McKervey, Tetrahedron Lett. 1997, 38, 4705–4708.
[6] a) D. M. Hodgson, P. A. Stupple, C. Johnstone, Chem. Com-
mun. 1999, 2185–2186; b) D. M. Hodgson, P. A. Stupple,
F. Y. T. M. Pierard, A. H. Labande, C. Johnstone, Chem. Eur.
J. 2001, 7, 4465–4476.
[7] a) D. M. Hodgson, M. Petroliagi, Tetrahedron: Asymmetry
2001, 12, 877–881; b) D. M. Hodgson, R. Glena, A. J. Red-
grave, Tetrahedron Lett. 2002, 43, 3927–3930; c) D. M. Hodg-
son, R. Glen, G. H. Grant, A. J. Redgrave, J. Org. Chem. 2003,
68, 581–586; d) D. M. Hodgson, A. H. Labande, F. Y. T. M.
Pierard, Synlett 2003, 1, 59–62; e) D. M. Hodgson, A. H. Lab-
ande, R. Glena, A. J. Redgrave, Tetrahedron: Asymmetry 2003,
14, 921–924; f) D. M. Hodgson, A. H. Labande, F. Y. T. M. Pi-
erard, M. Á. E. Castro, J. Org. Chem. 2003, 68, 6153–6159; g)
D. M. Hodgson, D. A. Seldena, A. G. Dossetter, Tetrahedron:
Asymmetry 2003, 14, 3841–3849; h) D. M. Hodgson, T. Brückl,
R. Glen, A. H. Labande, D. A. Selden, A. G. Dossetter, a. A. J.
Redgrave, Proc. Natl. Acad. Sci. USA 2004, 101, 5450–5454; i)
D. M. Hodgson, R. Glen, A. J. Redgrave, Tetrahedron: Asym-
metry 2009, 20, 754–757.
[13]
[14]
a) P. Chiu, B. Chen, K. F. Cheng, Org. Lett. 2001, 3, 1721–
1724; b) Z. Geng, B. Chen, P. Chiu, Angew. Chem. 2006, 118,
6343; Angew. Chem. Int. Ed. 2006, 45, 6197–6201; c) X. Zhang,
R. Y. Y. Ko, S. Li, R. Miao, P. Chiu, Synlett 2006, 1197–1200;
d) S. K. Lam, P. Chiu, Chem. Eur. J. 2007, 13, 9589–9599; e)
B. Shi, S. Merten, D. K. Y. Wong, J. C. K. Chu, L. L. Liu, S. K.
Lam, A. Jäger, W.-T. Wong, P. Chiu, P. Metz, Adv. Synth. Ca-
tal. 2009, 351, 3128–3132.
ˇ
[15]
a) P. Capek, H. Cahová, R. Pohl, M. Hocek, C. Gloeckner, A.
Marx, Chem. Eur. J. 2007, 13, 6196–6203; b) H. Cahová, L.
Havran, P. Brázdilová, H. Pivonˇková, R. Pohl, M. Fojta, M.
Hocek, Angew. Chem. 2008, 120, 2089; Angew. Chem. Int. Ed.
2008, 47, 2059–2062; c) T. Pesnot, G. K. Wagner, Org. Biomol.
Chem. 2008, 6, 2884–2891; d) T. Pesnot, R. Jørgensen, M. M.
Palcic, G. K. Wagner, Nat. Chem. Biol. 2010, 6, 321–323; e) V.
ˇ
Raindlová, R. Pohl, M. Sanda, M. Hocek, Angew. Chem. 2010,
122, 1082; Angew. Chem. Int. Ed. 2010, 49, 1064–1066.
There has been one example of an aryl phosphate triester un-
dergoing a Stille coupling: A. B. Chopa, G. F. Silbestri, M. T.
Lockhart, J. Organomet. Chem. 2005, 690, 3865–3877.
G. A. Molander, C.-S. Yun, Tetrahedron 2002, 58, 1465–1470.
a) G. Zou, Y. K. Reddy, J. R. Falck, Tetrahedron Lett. 2001, 42,
7213–7215; b) J. E. Harvey, M. N. Kenworthy, R. J. K. Taylor,
Tetrahedron Lett. 2004, 45, 2467–2471; c) C. W. Barfoot, J. E.
Harvey, M. N. Kenworthy, J. P. Kilburn, M. Ahmed, R. J. K.
Taylor, Tetrahedron 2005, 61, 3403–3417.
[16]
[8] a) H. Furuno, T. Hayano, T. Kambara, Y. Sugimoto, T. Hana-
moto, Y. Tanaka, Y. Z. Jin, T. Kagawa, J. Inanaga, Tetrahedron
2003, 59, 10509–10523; b) H. Furuno, T. Kambara, Y. Tanaka,
T. Hanamoto, T. Kagawa, J. Inanaga, Tetrahedron Lett. 2003,
44, 6129–6132.
[17]
[18]
[9] K. Shen, X. Liu, Y. Cai, L. Lin, X. Feng, Chem. Eur. J. 2009,
15, 6008–6014.
[10] a) S. Mayer, B. List, Angew. Chem. 2006, 118, 4299; Angew.
Chem. Int. Ed. 2006, 45, 4193–4195; b) G. L. Hamilton, E. J.
[19]
J.-M. Brunel, G. Buono, J. Org. Chem. 1993, 58, 7313–7314.
3936
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 3932–3937