11.4 Hz), 5.34–5.47 (1H, m), 5.50–5.62 (1H, m), 7.01–7.10 (2H,
m), 7.19–7.28 (1H, m), 7.33–7.42 (2H, m); 13C NMR (75 MHz,
CDCl3) d 14.11, 20.55, 20.84, 21.74, 23.27, 24.98, 25.47, 51.51,
52.39, 68.89, 70.04, 72.26, 72.41, 121.51, 124.59, 124.82, 126.08,
129.43, 134.69, 134.78, 150.31, 150.35, 170.73, 173.37; IR (neat)
3491, 2967, 1748, 1493, 1373, 1236, 1194, 1163, 1119, 1046 cm−1.
Anal. Calcd for C18H24O5: C, 67.48; H, 7.55, found: C, 67.2; H,
7.5%.
174.69; IR (neat) 3418, 2973, 1740, 1676, 1443, 1389, 1343, 1188,
1101, 1038 cm−1.
Acknowledgements
This research was partially supported by a Grant-in-Aid for
Scientific Research on Basic Areas (B) “18350056”, Priority
Areas (A) “17035087” and “18037068”, and Exploratory Research
“17655045” from MEXT. We appreciate the Takasago Interna-
tional Corporation for the evaluation of the lactone analogs.
4-Methyl-3-[(Z)-pent-2-enyl]-2(5H)-furanone (12). 1.0 M KOH
aqueous solution (2.5 mL) was added to
a stirred so-
lution of phenyl 4-acetoxy-3-hydroxy-3-methyl-2-[(Z)-pent-2-
enyl]butanoate (25; 320 mg, 1.0 mmol) in MeOH–THF (7.8 mL,
v/v = 2/1) at 20–25 ◦C, and the mixture was stirred at the same
temp. for 10 h. 1.0 M HCl aqueous solution (3.0 mL) was added
to the mixture, followed by being stirred at the same temp. for 2 h.
The mixture was concentrated under reduced pressure, which was
extracted twice with Et2O. The obtained organic phase was washed
with water, brine, dried (Na2SO4), and concentrated. The obtained
crude product was purified by SiO2-column chromatography
(hexane–AcOEt = 8 : 1) to give the desired product 12 (109 mg,
67%).
Pale yellow oil; 1H NMR (300 MHz,CDCl3) d 1.00 (3H, t, J =
7.6 Hz), 2.04 (3H, s), 2.16 (2H, dq, J = 6.9, 7.6 Hz), 3.03 (2H, d,
J = 7.2 Hz), 4.61 (2H, d, J = 1.0 Hz), 5.28–5.39 (1H, m), 5.41–5.52
(1H, m); 13C NMR (75 MHz, CDCl3) d 12.24, 14.03, 20.54, 21.53,
72.43, 123.58, 126.08, 133.41, 156.54, 174.71; IR (neat) 2961, 1740,
1437, 1341, 1231, 1155, 1028, 970 cm−1. Anal. Calcd for C10H14O2:
C, 72.26; H, 8.49; O, 19.25, found: C, 72.1; H, 8.3%.
References
1 (a) C. H. Heathcock, Comprehensive Organic Synthesis, ed. B. M. Trost
and I. Fleming, Pergamon, Oxford, 1991, vol. 2, p. 181; (b) M. B. Smith
and J. March, March’s Advanced Organic Chemistry, Wiley, New York,
5th edn, 2001, p. 1223; (c) J. Clayden, N. Greeves, S. Warren and P.
Wothers, Organic Chemistry, Oxford University Press, New York, 2001,
p. 689.
2 (a) E. J. Corey, R. Imwinkelreid, S. Pikul and Y. B. Xiang, J. Am. Chem.
Soc., 1989, 111, 5493; (b) E. J. Corey and S. S. Kim, J. Am. Chem. Soc.,
1990, 112, 4976; (c) E. J. Corey and D.-H. Lee, Tetrahedron Lett., 1993,
34, 1737.
3 H. C. Brown and K. Ganesan, Tetrahedron Lett., 1992, 33, 3421.
4 A. Abiko, J.-F. Liu and S. Masamune, J. Org. Chem., 1996, 61, 2590.
5 (a) Y. Tanabe, Bull. Chem. Soc. Jpn., 1989, 62, 1917; (b) Y. Yoshida,
R. Hayashi, H. Sumihara and Y. Tanabe, Tetrahedron Lett., 1997, 38,
8727; (c) Y. Yoshida, N. Matsumoto, R. Hamasaki and Y. Tanabe,
Tetrahedron Lett., 1999, 40, 4227; (d) R. Hamasaki, S. Funakoshi, T.
Misaki and Y. Tanabe, Tetrahedron, 2000, 56, 7423; (e) Y. Tanabe,
R. Hamasaki and S. Funakoshi, Chem. Commun., 2001, 1674; (f) Y.
Tanabe, A. Makita, S. Funakoshi, R. Hamasaki and T. Kawakusu,
Adv. Synth. Catal., 2002, 344, 507; (g) Y. Tanabe, N. Manta, R. Nagase,
T. Misaki, Y. Nishii, M. Sunagawa and A. Sasaki, Adv. Synth. Catal.,
2003, 345, 967; (h) A. Iida, S. Nakazawa, T. Okabayashi, A. Horii, T.
Misaki and Y. Tanabe, Org. Lett., 2006, 8, 5215.
Phenyl
4-acetoxy-3-hydroxy-3-methyl-2-[(E)-pent-2-enyl]-
butanoate (26). Following the procedure for the preparation
of 24, the reaction of (E)-phenyl hept-4-enoate (24; 613 mg,
3.0 mmol) with acetoxy-2-acetone (418 mg, 3.6 mmol) using TiCl4
(396 lL, 3.6 mmol) and Et3N (425 mg, 4.2 mmol) gave the desired
product 26 (677 mg, 70%).
6 (a) Y. Tanabe, N. Matsumoto, S. Funakoshi and N. Manta, Synlett,
2001, 1959; (b) Y. Tanabe, N. Matsumoto, T. Higashi, T. Misaki, T.
Itoh, M. Yamamoto, K. Mitarai and Y. Nishii, Tetrahedron, 2002, 58,
8269; (c) Y. Tanabe, K. Mitarai, T. Higashi, T. Misaki and Y. Nishii,
Chem. Commun., 2002, 2542.
Diastereomixture; pale yellow oil; 1H NMR (300 MHz, CDCl3)
d 0.99 (3H, t, J = 7.2 Hz), 1.34 (3H × 7/10, s), 1.38 (3H × 3/10, s),
2.05 (2H, quint., J = 7.2 Hz), 2.10 (3H × 7/10, s) 2.13 (3H × 3/10,
s), 2.37–2.61 (2H, m), 2.88 (1H × 7/10, dd, J = 4.5, 11.01 Hz),
2.90 (1H × 3/10, dd, J = 4.8, 9.6 Hz), 3.11 (1H, br s), 4.08 (1H ×
7/10, d, Jgem = 11.4 Hz), 4.10 (1H × 3/10, d, Jgem = 11.4 Hz), 4.14
(1H × 7/10, d, Jgem = 11.4 Hz), 4.19 (1H × 3/10, Jgem = 11.4 Hz),
5.39–5.53 (1H, m), 5.65 (1H, dt, J = 6.2, 15.5 Hz), 6.99–7.11 (2H,
m), 7.19–7.28 (1H, m), 7.32–7.43 (2H, m); 13C NMR (75 MHz,
CDCl3) d 13.57, 20.84, 21.74, 23.14, 25.53, 30.32, 30.86, 51.74,
52.62, 68.95, 70.02, 72.20, 72.35, 121.44, 121.48, 124.80, 125.07,
126.07, 129.43, 135.32, 135.45, 150.29, 170.73, 173.20; IR (neat)
3497, 2965, 1734, 1493, 1373, 1238, 1194, 1163, 1047, 970 cm−1.
7 A part of the preliminary result appeared in ref. 6a.
8
1H NMR shifts (ppm) of a-position of two methyl esters and two phenyl
esters are as follows. Methyl hexanoate (2.30), phenyl hexanoate (2.55),
methyl 2-methyl propanoate (2.56), phenyl 2-methyl propanoate (2.80).
This result indicates higher reactivity of phenyl esters.
9 T. W. Green and P. G. M. Wuts, Protective Groups in Organic Synthesis,
Wiley, New York, 3rd edn, 1999, p. 414.
10 For recent selected works: (a) M. Periasamy, G. Srinivas, G. V.
Karunaker and P. Bharathi, Tetrahedron Lett., 1999, 40, 7577; (b) J. C.
Adrian, J. L. Barkin, R. J. Fox, J. F. Chick, A. D. Hunter and R. A.
Nicklow, J. Org. Chem., 2000, 65, 6264; (c) R. Hayakawa and M.
Shimizu, Org. Lett., 2000, 2, 4079; (d) T. Tsuritani, S. Ito, H. Shinokubo
and K. Oshima, J. Org. Chem., 2000, 65, 5066; (e) Z. F. Han, H.
Yorimitsu, H. Shinokubo and K. Oshima, Tetrahedron Lett., 2000,
41, 4415; (f) A. Kagayama, K. Igarashi, I. Shiina and T. Mukaiyama,
Bull. Chem. Soc. Jpn., 2000, 73, 2579.
11 The use of other amines, i-Pr2NEt (∼30%), pyridine (trace), PhNMe2
(trace), and Ph2NMe (trace) produced disappointing results.
4-Methyl-3-[(E)-pent-2-enyl]-2(5H)-furanone (13). Following
the procedure for the preparation of 12, the reaction of phenyl
4-acetoxy-3-hydroxy-3-methyl-2-[(E)-pent-2-enyl]butanoate (26;
320 mg, 1.0 mmol) gave 4-methyl-3-[(E)-pent-2-enyl]-2(5H)-
furanone (13; 108 mg, 65%).
´
12 (a) Ref. 1b, p. 1230; (b) P. Bako, A. Szo¨llo˜sy, P. Bombicz and L. To˜ke,
Synlett, 1997, 291.
13 (a) N. Kise, K. Tokioka, Y. Aoyama and Y. Matsumura, J. Org. Chem.,
1995, 60, 1100; (b) Y. Matsumura, M. Nishimura, H. Hiu, M. Watanabe
and N. Kise, J. Org. Chem., 1996, 61, 2809; (c) N. Kise, K. Kumada, Y.
Terao and N. Ueda, Tetrahedron, 1998, 54, 2697; (d) V. D. Rao and M.
Periasamy, Tetrahedron: Asymmetry, 2000, 11, 1151.
1
Yellow oil; H NMR (300 MHz, CDCl3) d 0.96 (3H, t, J =
14 For example: (a) S. Tamai, H. Ushiroguchi, S. Sano and Y. Nagao,
Chem. Lett., 1995, 295; (b) J. M. Yost, G. Zhou and D. M. Coltart, Org.
Lett., 2006, 8, 1503; (c) G. Lalic, A. D. Aloise and M. D. Shair, J. Am.
Chem. Soc., 2003, 125, 2852; (d) D. Magdziac, G. Lalic, H. M. Lee,
K. C. Fortner, A. D. Aloise and M. D. Shair, J. Am. Chem. Soc., 2005,
7.2 Hz), 1.94–2.06 (2H, m), 2.03 (3H, s), 2.97 (2H, d, J = 6.2 Hz),
4.62 (2H, d, J = 1.0 Hz), 5.41 (1H, dtt, J = 1.4, 6.2, 15.1 Hz),
5.55 (1H, dtt, J = 1.4, 6.2, 15.1 Hz); 13C NMR (75 MHz, CDCl3)
d 12.14, 13.46, 25.26, 26.39, 72.37, 123.60, 125.68, 133.96, 157.04,
158 | Org. Biomol. Chem., 2007, 5, 151–159
This journal is
The Royal Society of Chemistry 2007
©