M. Gallant et al. / Bioorg. Med. Chem. Lett. 21 (2011) 288–293
293
described by Capretta.27 The conversion of 52 to the corresponding
chiral amine 53 was the key step in this sequence. Reductive
amination via a transaminase/dehydrogenase catalytic system
yielded the desired chiral amine with a 99% ee. Details on this piv-
otal reaction will be disclosed in a separated manuscript. Coupling
of the chiral amine 53 with 4-fluorobenzenesulfonyl chloride, fol-
lowed by N-methylation of the resulting sulfonamide 54 and
hydrolysis of the propyl ester afforded the desired enantiomeri-
cally pure MK-7246. Removal of the 4-fluoro phenylsulfonyl group
under mild conditions (Mg/MeOH) afforded the desired N-methyl
analog 56. Coupling of various arylsulfonyl chlorides with 56 and
subsequent saponification afforded the desired analogs described
in Table 4. Finally, alkylation of the sulfonamide 54 with different
alkyl and benzyl bromides followed by hydrolysis yielded the com-
pounds described in Table 3.
5. Sturino, C. F.; O’Neill, G.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li,
L.; Roy, B.; Scheigetz, J.; Tsou, N.; Aubin, Y.; Bateman, K. P.; Chauret, N.; Day, S.
H.; Lévesque, J. F.; Seto, C.; Silva, J. H.; Trimble, L. A.; Carriere, MC.; Denis, D.;
Greig, G.; Kargman, S.; Lamontagne, S.; Mathieu, MC.; Sawyer, N.; Slipetz, D.;
Abraham, W. M.; Jones, T.; McAuliffe, M.; Piechuta, H.; Nicoll-Griffith, D. A.;
Wang, Z.; Zamboni, R.; Young, R. N.; Metters, K. M. J. Med. Chem. 2007, 50, 794.
6. Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.;
Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med.
2001, 193, 255.
7. (a) Sood, A.; Arora, R. J. Clin. Hypertens. 2009, 11, 685; (b) Kostenis, E.; Ulven, T.
Trends Mol. Med. 2006, 12, 148.
8. Miadonna, A.; Tedeschi, A.; Brasca, C.; Folco, G.; Sala, A.; Murphy, R. C. J. Allergy
Clin. Immunol. 1990, 85, 906.
9. Huang, J. L.; Gao, P. S.; Mathias, R. A.; Yao, T. C.; Chen, L. C.; Kuo, M. L.; Hsu, S. C.;
Plunkett, B.; Togias, A.; Barnes, K. C.; Stellato, C.; Beaty, T. H.; Huang, S. K. Hum.
Mol. Genet. 2004, 13, 2691.
10. (a) Schuligoi, R.; Sturm, E.; Luschnig, P.; Konya, V.; Philipose, S.; Sedej, M.;
Waldhoer, M.; Peskar, B. A.; Heinemann, A. Pharmacology 2010, 85, 372; (b)
Pettipher, R.; Hansel, T. T. Drug News Perspect. 2008, 21, 317.
11. Norman, P. Expert Opin. Invest. Drugs 2010, 19, 947.
Substituted indole cores were made following the synthetic se-
quence B described in Scheme 2. Briefly, esterification of D-aspartic
12. Abramovitz, M.; Adam, M.; Boie, Y.; Carrière, M. C.; Denis, D.; Godbout, C.;
Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N. M.; Belley, M.; Gallant,
M.; Dufresne, C.; Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M.; Ouimet, N.;
Metters, K. M. Biochim. Biophys. Acta 2000, 1483, 285.
13. Sawyer, N.; Cauchon, E.; Chateauneuf, A.; Cruz, R. P.; Nicholson, D. W.; Metters,
K. M.; O’Neill, G. P.; Gervais, F. G. Br. J. Pharmacol. 2002, 137, 1163.
14. (a) Gervais, F. G.; Cruz, R. P.; Chateauneuf, A.; Gale, S.; Sawyer, N.; Nantel, F.;
Metters, K. M.; O’Neill, G. P. J. Allergy Clin. Immunol. 2001, 108, 982; (b)
Monneret, G.; Gravel, S.; Diamond, M.; Rokach, J.; Powell, W. S. Blood 2001, 98,
1942.
15. (a) Ishizuka, T.; Matsui, T.; Okamoto, Y.; Ohta, A.; Shichijo, M. Cardiovasc. Drug
Rev. 2004, 22, 71; (b) In our CRTH2 binding, the affinity of Ramatroban was
found to be significantly lower (Ki = 137 nM) then the reported value of Ulven
and Kostenis (Ki = 4.3 nM, Ref. 16a).
16. (a) Ulven, T.; Kostenis, E. J. Med. Chem. 2005, 48, 897; (b) Arimura, A.; Kishino,
J.; Tanimoto, N. Preparation of indole derivatives as PGD2 receptor antagonists.
WO 2003/097042.; (c) Tanimoto, N.; Hiramatsu, Y.; Mitsumori, S.; Inagaki, M.
Preparation of indole derivatives as PGD2 receptor antagonists. WO2003/
097598.
acid followed by treatment with 4-fluorophenylsulfonyl chloride
and subsequent reduction afforded the diol 58. The aziridine 60
was prepared via a Mitsunobu variation of the Wenker reaction28
and subsequent silylation of the alcohol moiety. Opening of the
aziridine 60 by the sodium salt of appropriately substituted indole
ester (IV)29 followed by direct methylation of the resulting sulfon-
amide sodium salt afforded the silyl ether V. Removal of the silyl
ether protecting group and subsequent Swern oxidation yielded
to key aldehyde precursor VI. Acid promoted cyclization of alde-
hyde VI in refluxing toluene afforded the alkene indole VII. Hydro-
genation and saponification of the unsaturated ester completed the
synthetic sequence. This convergent approach enabled a rapid ac-
cess to compounds described in Table 5.
In summary, the results presented in this manuscript recapit-
ulate our effort towards the identification of a potent and selec-
tive CRTH2 antagonist. MK-7246 is the end result of this
endeavor and after successfully completing preclinical safety
studies in rats and rhesus monkeys, MK-7246 entered Phase I
clinical trials. The results of those studies will be disclosed in sep-
arate manuscripts.
17. Tompkins, L. M.; Wallace, A. D. J. Biochem. Mol. Toxicol. 2007, 21, 176.
18. Zhang, Z. Y.; Wong, Y. N. Curr. Drug Metab. 2005, 6, 241.
19. Chen, A.; Dubé, D.; Dubé, L.; Gagné, S.; Gallant, M.; Gaudreault, M.; Grimm, E.;
Houle, R.; Lacombe, P.; Laliberté, S.; Liu, S.; MacDonald, D.; Mackay, B.; Martin,
D.; McKay, D.; Powell, D.; Lévesque, J.-F. Bioorg. Med. Chem. Lett. 2010, 20, 5074.
20. (a) Moore, D. E. Drug Saf. 2002, 25, 345; (b) Lankerani, L.; Baron, E. D. J. Cutan.
Med. Surg. 2004, 424.
21. (a) Wang, Z., Indole derivatives as CRTH2 receptor antagonists. WO07019675
and WO10031182.; (b) Gervais, F. G.; Sawyer, N.; Stocco, R.; Hamel, M.;
Krawczyk, C.; Sillaots, S.; Denis, D.; Wong, E.; Wang, Z.; Gallant, M.; Abraham,
W. M.; Slipetz, D.; Crackower, M. A.; O’Neill, G. P. Mol. Phamacol. 2011, 79, 1.
22. Juteau, H.; Gareau, Y.; Labelle, M. Tetrahedron Lett. 1997, 38, 1481.
23. To determine the affinity and selectivity of the glucuronide 40 for the human
CRTH2 and recombinant human prostanoid receptors, the binding assays
conditions were slightly modified. Because of the instability of 40 at
physiologically relevant pH (7) the assays were run at pH 5. MK-7246 was
tested as a reference in these conditions and we obtained similar Ki (within
twofold). Despite these modifications in the assay, 0.4% of degradation of 40
was found in the new assay condition. The potency found for 40 on the CRTH2
receptor was 207 nM but can be accounted for the most part by the presence of
MK-7246 (0.4% with Ki = 2.5 nM). Consequently, the CRTH2 Ki of 40 should be
>207 nM.
Acknowledgments
The authors would like to thank Dr. Yongxin Han, Dr. Scott Pet-
erson and Nicolas Lachance for proofreading this manuscript.
References and notes
1. Haeggström, J. Z.; Rinaldo-Matthis, A.; Wheelock, C. E.; Wetterholm, A. Biochem.
Biophys. Res. Commun. 2010, 21, 135.
2. (a) Honda, T.; Tokura, Y.; Miyachi, Y.; Kabashima, K. Curr. Drug Targets 2010.
available online; (b) Jones, R. L.; Giembycz, M. A.; Woodward, D. F. Br. J.
Pharmacol. 2009, 158, 104.
3. Walch, L.; Labat, C.; Gascard, J. P.; de Montpreville, V.; Brink, C.; Norel, X. Br. J.
Pharmacol. 1999, 126, 859.
4. (a) Lai, E.; De Lepeleire, I.; Crumley, T. M.; Liu, F.; Wenning, L. A.; Michiels, N.;
Vets, E.; O’Neill, G.; Wagner, J. A.; Gottesdiener, K. Clin. Pharmacol. Ther. 2007,
81, 849; (b) Cheng, K.; Wu, T. J.; Wu, K. K.; Sturino, C. F.; Metters, K.;
Gottesdiener, K.; Wright, S. D.; Wang, Z.; O’Neill, G.; Lai, E.; Waters, M. G. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 6682.
24. Compound 45 was prepared according to the synthetic sequence B using
methyl 1-(1H-indol-3-yl)cyclopropanecarboxylate as stating material.
Horwell, D. C.; McKiernan, M. J.; Osborne, S. Tetrahedron Lett. 1998, 39, 8729.
25. Compounds 46 and 47 were prepared from the propyl ester of MK-7246 (i.e.
55) by the action of t-BuOK and MeI followed by saponification and chiral
resolution.
26. Bascop, S.-I.; Laronze, J.-Y.; Sapi, J. Synthesis 2002, 1689.
27. Salim, M.; Capretta, A. Tetrahedron 2000, 56, 8063.
28. Okano, A.; Oishi, S.; Tanaka, T.; Fujii, N.; Ohno, H. J. Org. Chem. 2010, 75, 3396.
29. Onistschenko, A.; Stamm, H. Chem. Ber. 1989, 122, 2397.