Journal of the Iranian Chemical Society
SCG@Fe O during the process. As indicated in Fig. 7, no
10. R. Hachicha, O. Rekik, S. Hachicha, M. Ferchichi, S. Woodward,
3
4
N. Monceꢀ, J. Cegarra, T. Mechichi, Chemosphere 88, 677 (2012)
signiꢁcant changes are observable and some trivial difer-
ences between the reꢃection intensities can be attributed to
the variation in the orientation oꢀ powder samples during
XRD patterns recording.
1
1. Y.S. Yun, M.H. Park, S.J. Hong, M.E. Lee, Y.W. Park, H.-J. Jin,
ACS Appl. Mater. 7, 3684 (2015)
12. S.I. Mussatto, L.M. Carneiro, J.P. Silva, I.C. Roberto, J.A. Teix-
eira, Carbohydr. Polym. 83, 368 (2011)
1
1
3. F. Leiꢀa, A. Pandey, C.R. Soccol, Braz. Arch. Biol. Technol. 44,
A comparison between catalytic ability oꢀ SCG@Fe O
3
4
2
05 (2001)
with the reported Lewis acid catalysts ꢀor the reaction oꢀ
benzaldehyde, 2-aminopyridine, and cyclohexyl isocya-
nide is demonstrated in Table 6. The use oꢀ Fe O sup-
4. N.M.M. Alvarez, J.M. Pastrana, Y. Lagos, J.J. Lozada, Sustain.
Chem. Pharm. 10, 60 (2018)
15. P.S. Murthy, M.M. Naidu, Resour. Conserv. Recycl. 66, 45 (2012)
3
4
1
1
1
1
2
6. N. Zarrinbakhsh, T. Wang, A. Rodriguez-Uribe, M. Misra, A.K.
Mohanty, BioResources 11, 7637 (2016)
ported on SCG, as an inexpensive and abundant material
that has causes environmental problems, in the tandem
oxidation process is the advantages oꢀ this protocol.
7. M. Mahyari, M.S. Laeini, A. Shaabani, Chem. Commun. 50,
7855 (2014)
8. A. Shaabani, S. Keshipour, M. Hamidzad, S. Shaabani, J. Mol.
Catal. A: Chem. 395, 494 (2014)
9. A. Shaabani, R. Mohammadian, H. Farhid, M.K. Alavijeh, M.M.
Amini, Catal. Lett. 149, 1237 (2019)
Conclusions
0. A. Shaabani, Z. Hezarkhani, Cellulose 22, 3027 (2015)
In summary, SGG as an enormous waste material has been
investigated in the ꢁeld oꢀ catalyst. SCG was magnetized
through co-precipitation method and successꢀully used as
an eꢂcient catalyst in the aerobic oxidation oꢀ alcohols
and tandem oxidative GBB reaction. It is demonstrated
that this green material has dual catalytic role in the tan-
dem process: (i) As a reusable catalyst in the oxidation
transꢀormations and (ii) As an acidic heterogeneous cata-
lyst in the GBB MCR. As well, high yield, reusability oꢀ
the catalyst, simple and cheap starting materials, and mild
reaction conditions are the other advantages oꢀ this work.
21. R.J. Taylor, M. Reid, J. Foot, S.A. Raw, Acc. Chem. Res. 38, 851
(
2005)
2
2
2. A. Shaabani, A. Maleki, Chem. Pharm. Bull. 56, 79 (2008)
3. A. Shaabani, A. Maleki, M. Behnam, Synth. Commun. 39, 102
(2008)
24. A. Shaabani, R. Mohammadian, A. Hashemzadeh, R. Aꢀshari,
M.M. Amini, New J. Chem. 42, 4167 (2018)
2
5. M.T. Nazeri, R. Mohammadian, H. Farhid, A. Shaabani, B.
Notash, Tetrahedron Lett. 61, 151408 (2020)
26. M.T. Nazeri, H. Farhid, R. Mohammadian, A. Shaabani, ACS
Comb. Sci. 22, 361 (2020)
2
7. M.B. Gawande, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42,
3
371 (2013)
2
2
8. A. Maleki, V. Eskandarpour, J. Iran. Chem. Soc. 16, 1459 (2019)
9. L. Geng, B. Zheng, X. Wang, W. Zhang, S. Wu, M. Jia, W. Yan,
G. Liu, ChemCatChem 8, 805 (2016)
Acknowledgements We grateꢀully acknowledge ꢁnancial support ꢀrom
the Research Council oꢀ Shahid Beheshti University.
30. Z.-H. Zhang, H.-Y. Lü, S.-H. Yang, J.-W. Gao, J. Comb. Chem.
1
2, 643 (2010)
3
3
3
3
3
1. L. Zhou, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, H. He, J. Phys.
Chem. C 115, 16873 (2011)
Compliance with ethical standards
2. B. Dang, Y. Chen, X. Shen, C. Jin, Q. Sun, X. Li, Cellulose 26,
Conꢁlict oꢁ interest All authors declare that they have no conꢃict oꢀ
5
455 (2019)
interest.
3. B. Karimi, S. Abedi, J.H. Clark, V. Budarin, Angew. Chem. Int.
Ed. 45, 4776 (2006)
4. T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Adv. Synth. Catal. 351, 1890 (2009)
5. H. Alamgholiloo, S. Rostamnia, K. Zhang, T.H. Lee, Y.-S. Lee,
R.S. Varma, H.W. Jang, M. Shokouhimehr, ACS Omega 5, 5182
References
(
2020)
1
.
T.-A. Kua, M.A. Imteaz, A. Arulrajah, S. Horpibulsuk, Int. J.
Sustain. Eng. 12, 223 (2019)
36. F. Zamani, S.M. Hosseini, Catal. Commun. 43, 164 (2014)
37. E. Prathibha, R. Rangasamy, A. Sridhar, K. Lakshmi, Chemis-
trySelect 5, 988 (2020)
2
3
.
.
Z. Hao, B. Yang, D. Jahng, Water Res. 138, 250 (2018)
A. González, M. Plaza, J. Pis, F. Rubiera, C. Pevida, Energy
Procedia 37, 134 (2013)
38. M. Kotani, T. Koike, K. Yamaguchi, N. Mizuno, Green Chem. 8,
735 (2006)
4
5
.
.
J. Park, B. Kim, J.W. Lee, Bioresour. Technol. 221, 55 (2016)
C.T. Primaz, T. Schena, E. Lazzari, E.B. Caramão, R.A.
Jacques, Fuel 232, 572 (2018)
39. L. Zhang, P. Li, J. Yang, M. Wang, L. Wang, ChemPlusChem 79,
217 (2014)
40. H. Yan, H.-Y. Zhang, L. Wang, Y. Zhang, J. Zhao, React. Kinet.
Mech. Catal. 125, 789 (2018)
6
7
.
.
H.D. Utomo, K. Hunter, Environ. Technol. 27, 25 (2006)
D.R. Vardon, B.R. Moser, W. Zheng, K. Witkin, R.L. Evan-
gelista, T.J. Strathmann, K. Rajagopalan, B.K. Sharma, ACS
Sustain. Chem. Eng. 1, 1286 (2013)
41. R.L. Oliveira, P.K. Kiyohara, L.M. Rossi, Green Chem. 12, 144
(2010)
42. L. Sun, W. Zhan, J. Shang, G. Chen, S. Wang, Y. Chen, Z. Long,
React. Kinet. Mech. Catal. 126, 1055 (2019)
43. A. Shaabani, Z. Hezarkhani, S. Shaabani, RSC Adv. 4, 64419
(2014)
8
9
.
.
E.E. Kwon, H. Yi, Y.J. Jeon, Bioresour. Technol. 136, 475
(
2013)
D. Rodríguez-Padrón, M.J. Muñoz-Batista, H. Li, K. Shih, A.M.
Balu, A. Pineda, R. Luque, ACS Sustain. Chem. Eng. 7, 17030
44. A. Shaabani, M. BorjianBoroujeni, M.S. Laeini, Appl. Orga-
nomet. Chem. 30, 154 (2016)
(
2019)
1
3