Strecker Type Degradation Produced by Hydroxyalkenals
J. Agric. Food Chem., Vol. 53, No. 26, 2005 10259
nisms produced by both aldehydes and the similar chain length
of the assayed aldehydes. These results are in agreement with
the results found in a previous study comparing the reactivities
of epoxyalkenals and epoxyoxoene fatty esters (5) and confirm
that the chain length of the oxidized lipid plays an important
role in the reaction yield. According to the results obtained in
this and in the previous study, oxidized lipids derived from n-6
fatty acids (1, 4,5-epoxy-2-decenal, methyl 9,10-epoxy-13-oxo-
(17) Sayre, L. M.; Arora, P. K.; Iyer, R. S.; Salomon, R. G. Pyrrole
formation from 4-hydroxynonenal and primary amines. Chem.
Res. Toxicol. 1993, 6, 19-22.
(
18) Erickson, M. C. Lipid oxidation of muscle foods. In Food Lipids.
Chemistry, Nutrition, and Biotechnology; Akoh, C. C., Min, D.
B., Eds.; Dekker: New York, 1998; pp 297-332.
(
19) German, J. B. Food Processing and lipid oxidation. AdV. Exp.
Med. Biol. 1999, 459, 23-50.
(
20) Min, D. B.; Boff, J. M. Lipid oxidation of edible oil. In Food
Lipids. Chemistry, Nutrition, and Biotechnology, 2nd ed.; Akoh,
C. C., Min, D. B., Eds.; Dekker: New York, 2002; pp 335-
363.
1
1-octadecenoate, and methyl 12,13-epoxy-9-oxo-11-octa-
decenoate) have been found to produce the Strecker type
degradation of 8 in a higher extent than oxidized lipids derived
from n-3 fatty acids (4,5-epoxy-2-heptenal). Additional studies
should confirm these results and might reveal a different
contribution of different types of fatty acids to flavor formation
by the Strecker type mechanism.
(
(
(
21) Baron, C. P.; Andersen, H. J. Myoglobin-induced lipid oxidation.
A review. J. Agric. Food Chem. 2002, 50, 3887-3897.
22) Nawar, W. W. Lipids. In Food Chemistry, 3rd ed.; Fennema,
O. R., Ed.; Dekker: New York, 1996; pp 225-319.
23) Hidalgo, F. J.; Zamora, R. Methyl linoleate oxidation in the
presence of bovine serum albumin. J. Agric. Food Chem. 2002,
50, 5463-5467.
ACKNOWLEDGMENT
(
24) Zamora, R.; Hidalgo, F. J. Comparative methyl linoleate and
methyl linolenate oxidation in the presence of bovine serum
albumin at several lipid/protein ratios. J. Agric. Food Chem.
We are indebted to Jos e´ L. Navarro for technical assistance.
2
003, 51, 4661-4667.
LITERATURE CITED
(25) Zamora, R.; Hidalgo, F. J. Phosphatidylethanolamine modifica-
tion by oxidative stress product 4,5(E)-epoxy-2(E)-heptenal.
Chem. Res. Toxicol. 2003, 16, 1632-1641.
(
1) Ho, C.-T. Thermal generation of Maillard aromas. In The
Maillard Reaction: Consequences for the Chemical and Life
Sciences; Ikan, R., Ed.; John Wiley & Sons: Chichester, United
Kingdom, 1996; pp 27-53.
(
26) Zamora, R.; Olmo, C.; Navarro, J. L.; Hidalgo, F. J. Contribution
of phospholipid pyrrolization to the color reversion produced
during deodorization of poorly degummed vegetable oils. J.
Agric. Food Chem. 2004, 52, 4166-4171.
(
2) Yaylayan, V. A. Recent advances in the chemistry of Strecker
degradation and Amadori rearrangement: Implications to aroma
and color formation. Food Sci. Technol. Res. 2003, 9, 1-6.
3) Reineccius, G. FlaVor Chemistry and Technology, 2nd ed.; Taylor
(
27) Hidalgo, F. J.; Nogales, F.; Zamora, R. Changes produced in
the antioxidative activity of phospholipids as a consequence of
their oxidation. J. Agric. Food Chem. 2005, 53, 659-662.
28) Zamora, R.; Nogales, F.; Hidalgo, F. J. Phospholipid oxidation
and nonenzymatic browning development in phosphatidyl-
ethanolamine/ribose/lysine model systems. Eur. Food Res.
Technol. 2005, 220, 459-465.
(
(
&
Francis: Boca Raton, FL, 2006.
(
4) Hidalgo, F. J.; Zamora, R. Strecker-type degradation produced
by the lipid oxidation products 4,5-epoxy-2-alkenals. J. Agric.
Food Chem. 2004, 52, 7126-7131.
(5) Zamora, R.; Gallardo, E.; Navarro, J. L.; Hidalgo, F. J. Strecker-
(
29) Zamora, R.; Hidalgo, F. J. Coordinate contribution of lipid
oxidation and Maillard reaction to the nonenzymatic food
browning. Crit. ReV. Food Sci. Nutr. 2005, 45, 49-59.
30) Hidalgo, F. J.; Zamora, R. Interplay between the Maillard
Reaction and lipid peroxidation in biochemical systems. Ann.
N. Y. Acad. Sci. 2005, 1043, 319-326.
type degradation of phenylalanine by methyl 9,10-epoxy-13-oxo-
1
1-octadecenoate and methyl 12,13-epoxy-9-oxo-11-octa-
decenoate. J. Agric. Food Chem. 2005, 53, 4583-4588.
6) Gardner, H. W. Oxygen radical chemistry of polyunsaturated
fatty acids. Free Radical Biol. Med. 1989, 7, 65-86.
7) Frankel, E. N. Lipid Oxidation, 2nd ed.; The Oily Press:
Bridgwater, United Kingdom, 2005.
(
(
(
(
(
(
(
31) Schieberle, P. Odour-active compounds in moderately roasted
sesame. Food Chem. 1996, 55, 145-152.
8) Petersen, D. R.; Doorn, J. A. Reactions of 4-hydroxynonenal
with proteins and cellular targets. Free Radical Biol. Med. 2004,
32) Kim, Y.-S.; Ho, C.-T. Formation of pentylpyridines in an oil
medium. J. Agric. Food Chem. 1998, 46, 644-647.
3
7, 937-945.
33) Zhou, A.; Boatright, W. L. Precursors for formation of 2-pentyl
pyridine in processing of soybean protein isolates. J. Food Sci.
(
9) Liu, Q.; Raina, A. K.; Smith, M. A.; Sayre, L. M.; Perry, G.
Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Mol.
Aspects Med. 2003, 24, 305-313.
2
000, 65, 1155-1159.
(
34) Fukami, K.; Ishiyama, S.; Yaguramaki, H.; Masuzawa, T.;
Nabeta, Y.; Endo, K.; Shimoda, M. Identification of distinctive
volatile compounds in fish sauce. J. Agric. Food Chem. 2002,
(
10) Carunchia Whetstine, M. E.; Cadwallader, K. R.; Drake, M. A.
Characterization of aroma compounds responsible for the rosy/
floral flavour in cheddar cheese. J. Agric. Food Chem. 2005,
5
0, 5412-5416.
5
3, 3126-3132.
(
(
(
35) Kinlin, T. E.; Muralidhara, R.; Pittet, A. O.; Sanderson, A.;
Walradt, J. P. Volatile components of roasted filberts. J. Agric.
Food Chem. 1972, 20, 1021-1028.
(
11) Gardner, H. W.; Bartelt, R. J.; Weisleder, D. A facile synthesis
of 4-hydroxy-2(E)-nonenal. Lipids 1992, 27, 686-689.
(
12) Zamora, R.; Hidalgo, F. J. Linoleic acid oxidation in the presence
of amino compounds produces pyrroles by carbonylamine
reactions. Biochim. Biophys. Acta 1995, 1258, 319-327.
13) Zamora, R.; Hidalgo, F. J. 2-Alkylpyrrole formation from 4,5-
epoxy-2-alkenals. Chem. Res. Toxicol. 2005, 18, 342-348.
14) Hunter, R. S. The Measurement of Appearance; Hunter Associ-
ates Laboratory: Fairfax, VA, 1973.
36) Soliman, M. M.; Osman, F.; El-Sawy, A. A. Volatile components
of roasted chufa-tubers. Agric. Biol. Chem. 1982, 46, 2843-
2
845.
(
(
(
37) Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.;
Nakamura, S. J. Agric. Food Chem. 1991, 39, 770-777.
Received for review September 12, 2005. Revised manuscript received
October 21, 2005. Accepted October 30, 2005. This study was supported
in part by the European Union (FEDER funds) and the Plan Nacional
de I + D of the Ministerio de Educaci o´ n y Ciencia of Spain (Project
AGL2003-02280).
15) Hidalgo, F. J.; Nogales, F.; Zamora, R. Effect of the pyrrole
polymerization mechanism on the antioxidative activity of
nonenzymatic browning reactions. J. Agric. Food Chem. 2003,
5
1, 5703-5708.
(16) Snedecor, G. W.; Cochran, W. G. Statistical Methods, 7th ed.;
Iowa State University Press: Ames, IA, 1980.
JF052240+