C O M M U N I C A T I O N S
Å; Ag3-Ag4, 3.5207(2) Å] and two long [Ag2-Ag3, 5.8373(2)
Å; Ag1-Ag4, 5.9592(2) Å] Ag · · · Ag separations.
Silver NHC complexes are excellent carbene transfer agents.12
All four silver atoms in [Ag4(1)2](PF6)4 can be substituted by AuI
to give [Au4(1)2](PF6)4 in 65% yield without destruction of the
supramolecular structure. Complete conversion was achieved by
stirring a mixture of [Ag4(1)2](PF6)4 and 4 equiv of [AuCl(SMe2)]
in acetonitrile for 12 h (Scheme 1). Complex [Au4(1)2](PF6)4 was
characterized by NMR spectroscopy and mass spectrometry. The
13C NMR spectrum showed the resonance for the carbene carbon
atoms shifted only slightly to 183.91 ppm as a singlet. These
spectroscopic data agree well with data reported for simple gold
dicarbene complexes.11b
Figure 2. Molecular structure of the trication [Au3(2)2]3+ in
[Au3(2)2](PF6)3 ·0.5Et2O·1.5CH3CN·0.5(CH3)2CO (hydrogen atoms have
been omitted for clarity, and only the first atom of each N-Et substituent is
depicted).
Cl(SMe2)] to give the homonuclear AuI complexes with retention
of the three-dimensional structure. Current studies are focused on
the incorporation of additional metal ions (Au+) or small substrates
(acetylenes) into the metallosupramolecular assemblies.
Supramolecular structures similar to [M4(1)2]4+ (M ) AgI, AuI)
can also be prepared from tricarbene ligands. The trisimidazolium
salt H3-2(PF6)3 reacts with Ag2O in acetonitrile to give the trisilver
salt [Ag3(2)2](PF6)3 in an excellent yield of 86% (Scheme 2; also
see the Supporting Information). The NMR spectroscopic data for
[Ag3(2)2](PF6)3 [13C NMR: δ(Ccarbene) ) 181.19 ppm] resembled
those of the tetrasilver salt [Ag4(1)2](PF6)4. The ESI mass spectrum
showed the mass of cation [Ag3(2)2]3+ as the most intense peak.
Acknowledgment. The authors thank the Deutsche Forschungs-
gemeinschaft and the Fonds der Chemischen Industrie for financial
support. A.R. thanks the NRW Graduate School of Chemistry
Mu¨nster for a predoctoral grant.
Scheme 2. Preparation of Compound [Ag3(2)2](PF6)3 and
Transmetalation to [Au3(2)2](PF6)3
Supporting Information Available: Experimental details for the
synthesis of all compounds and X-ray crystallographic data (CIF) for
compounds [Ag4(1)2](PF6)4 · 2CH3CN and [Au3(2)2](PF6)3 · 0.5Et2-
O·1.5CH3CN·0.5(CH3)2CO. This material is available free of charge
References
(1) Lehn, J.-M.; Rigault, A.; Siegel, J.; Horrowfield, J.; Chevrier, B.; Moras,
D. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2565.
(2) (a) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005,
38, 371. (b) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32,
975. (c) Kreickmann, T.; Hahn, F. E. Chem. Commun. 2007, 1111. (d)
Albrecht, M. Chem. ReV. 2001, 101, 3457. (e) Boyer, J. L.; Kuhlman, M. L.;
Rauchfuss, T. B. Acc. Chem. Res. 2007, 40, 233. (f) Therrien, B.; Su¨ss-
Fink, G.; Govindaswamy, P.; Renfrew, A. K.; Dyson, P. J. Angew. Chem.,
Int. Ed. 2008, 47, 3773. (g) Seidel, S. R.; Stang, P. J. Acc. Chem. Res.
2002, 35, 972, and references cited therein.
(3) (a) Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251. (b)
Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007, 316, 85. (c)
Han, Y.-F.; Jia, W.-G.; Lin, Y.-J.; Jin, G.-X. Angew. Chem., Int. Ed. 2009,
48, 6234. (d) Birkmann, B.; Fro¨hlich, R.; Hahn, F. E. Chem.sEur. J. 2009,
15, 9325.
(4) Yamamotoa, Y.; Suzuki, H.; Tajima, N.; Tatsumi, K. Chem.sEur. J. 2002,
8, 372.
Transmetalation of [Ag3(2)2](PF6)3 with 3 equiv of [AuCl(SMe2)]
gave exclusively the homotrinuclear gold(I) complex [Au3(2)2](PF6)3
in 60% yield with retention of the metallosupramolecular structure.
Formation of heterobimetallic Ag/Au complexes was ruled out on
the basis of the observation of only one carbene resonance in the
13C NMR spectrum; this resonance, however, was shifted to
δ(Ccarbene) ) 183.67 ppm, just slightly downfield relative to the
trisilver complex.
(5) (a) Lai, S.-W.; Cheung, K.-K.; Chan, M. C.-W.; Che, C.-M. Angew. Chem.,
Int. Ed. 1998, 37, 182. (b) Han, Y.; Lee, L. J.; Huynh, H. V. Chem.sEur.
J. 2010, 16, 771.
(6) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122.
(7) (a) Hahn, F. E.; Langenhahn, V.; Lu¨gger, T.; Pape, T.; Le Van, D. Angew.
Chem., Int. Ed. 2005, 44, 3759. (b) Hahn, F. E.; Radloff, C.; Pape, T.;
Hepp, A. Chem.sEur. J. 2008, 14, 10900. (c) Flores-Figueroa, A.; Pape,
T.; Feldmann, K.-O.; Hahn, F. E. Chem. Commun. 2010, 46, 324.
(8) (a) Hahn, F. E.; Radloff, C.; Pape, T.; Hepp, A. Organometallics 2008,
27, 6408. (b) Radloff, C.; Hahn, F. E.; Pape, T.; Fro¨hlich, R. Dalton Trans.
2009, 7215. (c) Radloff, C.; Weigand, J. J.; Hahn, F. E. Dalton Trans.
2009, 9392.
The trigold complex was also identified by ESI mass spectrom-
etry, which showed the mass of cation [Au3(2)2]3+ as the most
intense peak.
An X-ray diffraction study with crystals of [Au3(2)2]-
(PF6)3 ·0.5Et2O·1.5CH3CN·0.5(CH3)2CO confirmed the composi-
tion and molecular structure of the [Au3(2)2]3+ cation (Figure 2).
The Au-Ccarbene distances [2.009(5)-2.018(6) Å] are slightly shorter
than the Ag-Ccarbene distances, in agreement with previous
reports.7b,11b The Au · · ·Au separations are longer than the Ag · · ·Ag
separations in [Ag4(1)2]4+ and are almost equidistant [5.9893(6)-
6.1572(9) Å].
We have developed a straightforward high-yield synthesis of
cylindrical polynuclear AgI carbene complexes from polyimidazo-
lium salts via metal-controlled self-assembly. The tetra- and
trinuclear silver complexes undergo transmetalation with [Au-
(9) Khramov, D. M.; Boydston, A. J.; Bielawski, C. W. Angew. Chem., Int.
Ed. 2006, 45, 6186.
(10) (a) Hiraoka, S.; Shiro, M.; Shionoya, M. J. Am. Chem. Soc. 2004, 126,
1214. (b) Hiraoka, S.; Tanaka, R.; Shionoya, M. J. Am. Chem. Soc. 2006,
128, 13038.
(11) (a) Garrison, J. C.; Youngs, W. J. Chem. ReV. 2005, 105, 3978. (b) Lin,
J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.;
Lin, I. J. B. Chem. ReV. 2009, 109, 3561. (c) Guerret, O.; Sole´, S.;
Gornitzka, H.; Teichert, M.; Trinquier, G.; Bertrand, G. J. Am. Chem. Soc.
1997, 119, 6668.
(12) Lin, I. J. B.; Vasam, C. S. Coord. Chem. ReV. 2007, 251, 642.
JA101490D
9
J. AM. CHEM. SOC. VOL. 132, NO. 13, 2010 4573