10.1002/chem.201903221
Chemistry - A European Journal
RESEARCH ARTICLE
[1]
a) N. Hazari, P. R. Melvin, M. M. Beromi, Nat. Rev. Chem. 2017, 1, 25;
b) V. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal. 2016, 6, 890-906;
c) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014,
510, 485-496; d) S. Diez-Gonzalez, N-Heterocyclic Carbenes, Royal
Society of Chemistry, Cambridge, 2010.
species in the molecular form, and this organic cation serves as
a counterion for the anionic metal-containing intermediates in
the catalytic cycle.
Formation of the [NHC-R+] cations readily took place through the
solvent-mediated processes (R = H) or in the catalytic cycle via
oxidative addition of organic halides followed by Ar-NHC
coupling or after β-H-elimination via H-NHC coupling. Both
transformations are highly probable under the reaction
conditions as the activation barriers of R-NHC couplings are
lower than for the base-assisted reduction, which is the rate-
determining step of the reaction, according to DFT calculations
of the PES.
[2]
[3]
a) S. Singh, J. Bruffaerts, A. Vasseur, I. Marek, Nat. Commun. 2017, 8,
14200; b) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100,
3009-3066; c) R. F. Heck, Acc. Chem. Res. 1979, 12, 146-151.
a) T. Kitamura, Y. Fujiwara, in From C-H to C-C Bonds, 2014, pp. 33-
54; b) A. Molnar, Chem. Rev. 2011, 111, 2251-2320; c) D. Mc Cartney,
P. J. Guiry, Chem. Soc. Rev. 2011, 40, 5122-5150; d) B. P. Carrow, J.
F. Hartwig, J. Am. Chem. Soc. 2010, 132, 79-81; e) M. Oestreich, The
Mizoroki–Heck Reaction, 2009; f) A. M. Trzeciak, J. J. Ziółkowski,
Coord. Chem. Rev. 2007, 251, 1281-1293; g) N. T. S. Phan, M. Van
Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609-679; h) J. G.
de Vries, Can. J. Chem. 2001, 79, 1086-1092; i) M. T. Reetz, E.
Westermann, Angew. Chem. Int. Ed. 2000, 39, 165-168.
One may argue that the present findings diminish the role of
M/NHC complexes, since NHC ligands may be removed from
the metal center. However, it is not the case. Moreover, it should
be emphasized that efficient catalytic system was obtained in
situ only due to intrinsically encoded possibility of formation and
simultaneous stabilization of reactive ionic species. Thus, the
present findings of lability and dual stabilization mechanism
highlighted unique possibilities of M/NHC systems and opened
new venues for catalysis.
[4]
a) H. A. Dieck, R. F. Heck, J. Am. Chem. Soc. 1974, 96, 1133-1136; b)
J. P. Knowles, A. Whiting, Org. Biomol. Chem. 2007, 5, 31-44; c) M.
Ludwig, S. Strömberg, M. Svensson, B. Åkermark, Organometallics
1999, 18, 970-975; d) A. H. Machado, H. M. Milagre, L. S. Eberlin, A. A.
Sabino, C. R. Correia, M. N. Eberlin, Org. Biomol. Chem. 2013, 11,
3277-3281; e) W. Rauf, J. M. Brown, Chem. Commun. 2013, 49, 8430-
8440.
The findings on dynamic catalysis with the NHC-derived azolium
counterion stabilization of the anionic palladium species reach
far beyond the particular system under study here. These
conditions correspond to a number of synthetic transformations
[5]
[6]
a) C. C. Cassol, A. P. Umpierre, G. Machado, S. I. Wolke, J. Dupont, J.
Am. Chem. Soc. 2005, 127, 3298-3299; b) S. Tarnowicz, W. Alsalahi, E.
Mieczyńska, A. M. Trzeciak, Tetrahedron 2017, 73, 5605-5612; c) A. M.
Trzeciak, A. W. Augustyniak, Coord. Chem. Rev. 2019, 384, 1-20.
a) C. Amatore, E. Carre, A. Jutand, M. A. M'Barki, G. Meyer,
Organometallics 1995, 14, 5605-5614; b) C. Amatore, A. Jutand, Acc.
Chem. Res. 2000, 33, 314-321; c) F. Schroeter, J. Soellner, T.
Strassner, ACS Catal. 2017, 7, 3004-3009; d) F. Schroeter, T.
Strassner, Inorg. Chem. 2018, 57, 5159-5173; e) D. Guest, V. H.
Menezes da Silva, A. P. de Lima Batista, S. M. Roe, A. A. C. Braga, O.
Navarro, Organometallics 2015, 34, 2463-2470; f) H. V. Huynh, Y. Han,
J. H. H. Ho, G. K. Tan, Organometallics 2006, 25, 3267-3274.
including
the
Heck
reaction,
cross-couplings,
C-H
functionalizations and heterocyclizations, among many other
reactions. The discussed results invoke re-thinking of the
mechanisms of catalytic cycles and change the concept for
design of new catalysts.
[7]
[8]
a) K. S. Bloome, R. L. McMahen, E. J. Alexanian, J. Am. Chem. Soc.
2011, 133, 20146-20148; b) P. Chuentragool, D. Yadagiri, T. Morita, S.
Sarkar, M. Parasram, Y. Wang, V. Gevorgyan, Angew. Chem. Int. Ed.
2019, 58, 1794-1798; c) M. Parasram, V. O. Iaroshenko, V. Gevorgyan,
J. Am. Chem. Soc. 2014, 136, 17926-17929.
Acknowledgements
The authors are grateful to Dr. Alexander V. Astakhov for the
samples of the Pd/NHC complexes, to Dr. Matthias Witt for the
help with accessing FT/ICR-MS instrument, to Dr. Alexey S.
Kashin for the electron microscopy studies, to Natalia S.
Shubina and Artem N. Fakhrutdinov for assistance with NMR
spectroscopy studies, and to Daniil A. Boiko for helpful
discussions. Research on catalysis, organic synthesis and
mechanisms was supported by Russian Science Foundation
(RSF Grant 19-13-00460). IRIS study at FELIX laboratory has
been supported by the project CALIPSOplus under the Grant
Agreement 730872 from the EU Frame-work Programme for
Research and Innovation HORIZON 2020. We gratefully
a) A. Ortiz, P. Gómez-Sal, J. C. Flores, E. de Jesús, Organometallics
2018, 37, 3598-3610; b) R. Bhaskar, A. K. Sharma, A. K. Singh,
Organometallics 2018, 37, 2669-2681; c) A. Chatterjee, T. R. Ward,
Catal. Lett. 2016, 146, 820-840; d) R. Zhong, A. Pöthig, Y. Feng, K.
Riener, W. A. Herrmann, F. E. Kühn, Green Chem. 2014, 16, 4955-
4962; e) L. A. Schaper, S. J. Hock, W. A. Herrmann, F. E. Kuhn, Angew.
Chem. Int. Ed. 2013, 52, 270-289; f) D. B. Bagal, R. A. Watile, M. V.
Khedkar, K. P. Dhake, B. M. Bhanage, Catal. Sci. Technol. 2012, 2,
354-358; g) M. Weck, C. W. Jones, Inorg. Chem. 2007, 46, 1865-1875;
hRecoverable and Recyclable Catalysts, Wiley, Chichester, UK, 2009;
i) C. Diner, M. G. Organ, Organometallics 2018, 38, 66-75; j) J. D.
Hayler, D. K. Leahy, E. M. Simmons, Organometallics 2018.
acknowledge
the
Nederlandse
Organisatie
voor
[9]
D. B. Eremin, V. P. Ananikov, Coord. Chem. Rev. 2017, 346, 2-19.
Wetenschappelijk Onderzoek (NWO) for the support of the
FELIX Laboratory.
[10] A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S.
Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chemyshev, V. P.
Ananikov, Organometallics 2017, 36, 1981-1992.
[11] a) V. M. Chernyshev, O. V. Khazipov, M. A. Shevchenko, A. Y.
Chernenko, A. V. Astakhov, D. B. Eremin, D. V. Pasyukov, A. S. Kashin,
V. P. Ananikov, Chem. Sci. 2018, 9, 5564-5577; b) E. G. Gordeev, D. B.
Eremin, V. M. Chernyshev, V. P. Ananikov, Organometallics 2018, 37,
787-796; c) O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V.
Astakhov, D. V. Pasyukov, D. B. Eremin, Y. V. Zubavichus, V. N.
Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics 2018,
37, 1483-1492.
Conflict of interest
The authors declare no conflict of interest.
Keywords: Mizoroki-Heck reaction • NHC-complexes • Dynamic
catalysis • Mass spectrometry • Electrospray ionization
This article is protected by copyright. All rights reserved.