R-Amino Acids Decomposition Mechanism
J. Phys. Chem. A, Vol. 114, No. 7, 2010 2487
n
TABLE 10: Wiberg Index Evolution Changes and
Synchronicity for Ethylene Elimination from
N-Benzylglycine Ethyl Ester
δBave ) 1/n
δB
i
∑
i)1
atoms
%Ev
synchronicity
0.88
C20-O21
C20-O22
O22-C23
C23-C26
C26-H29
O21-H29
60.407
46.141
67.244
31.269
50.416
62.901
In this analysis, the Bi values indicate bond order and δBi
is the change in bond order as the reaction progress from
reactant (BiR), to the transition state TS (BiTS) and to products
(BiP). The percent evolution %Ev is used to show the relative
advance of the different reaction coordinates considered. The
synchonicity parameter Sy varies between 0 and 1, with a
value of Sy ) 0 for asynchronic processes and Sy ) 1 for a
concerted synchronic.
This study was carried out for the rate-determining step.
Bonds indexes were calculated for those bonds that change as
the reaction proceeds, that is: C20-O21, C20-O22, O22-C23,
C23-C26, C26-H29, and O21-H29 (Scheme 1, Figure 2).
The remaining bonds stay practically unchanged.
the hydrogen abstraction by the carbonyl oxygen. The TS
topology is planar and the process is polar in nature, that is,
occurring in a concerted but moderately asynchronic fashion.
Acknowledgment. TC is grateful to the Consejo de Desar-
rollo Cient´ıfico y Human´ıstico (C.D.C.H.) for Grant No. PG-
03-00-6499-2006.
NBO charges also show a strong O22-C23 bond polarization
in the sense Oδ-sCδ+. NBO charges and charge density plots
of the TS can be found as Supporting Information.
Supporting Information Available: This information is
The relative advance in the reaction coordinate (%Ev,
Table 10) suggests that the most important factor in the
thermal elimination of ethylene is the breaking of bond
O22-C23 67%. This fact has also been described in several
theoretical works on other related elimination reactions, where
the breaking of C-O bond is more advanced than the
migration of the hydrogen, demonstrating an asynchronous
process.26,27 This is also observed in the atom distances in
Table 8 as describe above. The migration of hydrogen H29
to oxygen O21 has advanced to a lesser extent than the
breaking of O22-C23, as well as the change in bond order
in C20-O21 associated with it. In other words, the elongation
of the O-C bond of the alcohol part of the ester is dominating
in the reaction, and it is accompanied in less extent, by the
abstraction of hydrogen at the ethyl group by the carbonyl
oxygen. These facts indicates that the breaking of C-O bond
occur before the hydrogen transfer indicating a late TS in
this reaction coordinate. The described changes in bond order
demonstrate asymmetric TS. The synchronicity value of 0.88
reveals a process that is concerted but not completely
synchronic.
References and Notes
(1) Ensuncho, A.; Lafont, J.; Rotinov, A.; Dom´ınguez, R. M.; Herize,
A.; Quijano, J.; Chuchani, G. Int. J. Chem. Kinet. 2001, 33, 465–471, and
references cited therein.
(2) Lafont, J.; Ensuncho, A.; Rotinov, A.; Dom´ınguez, R. M.; Herize,
A.; Quijano,.; Chuchani, G. J. Phys. Org. Chem. 2003, 16, 84–88.
(3) Dom´ınguez, R. M.; Tosta, M.; Chuchani, G. J. Phys. Org. Chem.
2003, 16, 869–874.
(4) Safont, V. S.; Moliner, V.; Andres, J.; Domingo, L. R. J. Phys.
Chem. A. 1997, 101, 1859–1865.
(5) Domingo, L. R.; Andres, J.; Moliner, V.; Safont, V. S. J. Am. Chem.
Soc. 1997, 119, 6415–6422.
(6) Domingo, L. R.; Pitcher, M. T.; Andres, J.; Moliner, V.; Safont,
V. S.; Chuchani, G. Chem. Phys. Lett. 1997, 274, 422–428.
(7) Domingo, L. R.; Pitcher, M. T.; Safont, V. S.; Andres, J.; Chuchani,
G. J. Phys. Chem. A. 1999, 103, 3935–3943.
(8) Rotinov, A.; Chuchani, G.; Andres, J.; Domingo, L. R.; Safont,
V. S. Chem. Phys. 1999, 246, 1–12.
(9) Chuchani, G.; Dom´ınguez, R. M.; Rotinov, A.; Mart´ın., I. J. Phys.
Org. Chem. 1999, 12, 612–618.
(10) Chuchani, G.; Dom´ınguez, R. M.; Herize, A.; Romero, R. J. Phys.
Org. Chem. 2000, 13, 757–764.
(11) Al-Awadi, S. A.; Abdallah, M. R.; Hasan, M. A.; N. A.; Al-Awadi,
N. A. Tetrahedron 2004, 60, 304–3049.
(12) Maccoll, A. J. Chem. Soc. 1955, 965–973.
(13) Swinbourne, E. S. Aust. J. Chem. 1958, 11, 314–330.
(14) Dominguez, R. M.; Herize, A.; Rotinov, A.; Alvarez-Aular, A.;
Visbal, G.; Chuchani, G. J. Phys. Org. Chem. 2004, 17, 399–408.
(15) Frisch, M.; J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.,
Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez,
C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, ReVision
A; Gaussian, Inc.: Pittsburgh, PA, 1998.
(16) McQuarrie, D. Statistical Mechanics, Harper & Row, New York,
1986.
(17) (a) Foresman, J. B.; Frish Æ. Exploring Chemistry with Electronic
Methods, 2nd Edition; Gaussian, Inc.: Pittsburg, PA, 1996. (b) Scale factors
freq_scale.htm.
5. Conclusions
The thermal decomposition of N-benzyl glycine ethyl ester
has been studied both experimental and theoretically. The
reaction proceeds in two steps, the elimination of ethylene
followed by the rapid decarboxylation of the intermediate
amino acid N-benzyl glycine to give benzylmethylamine. The
formation of benzyl methylamine appears to support mech-
anism (5). The elimination of the ethyl ester is unimolecular
in the presence of the free chain radical suppressor and
follows the rate expression log k1 (s-1) ) (11.83 ( 0.52) -
(190.3 ( 6.9) kJ mol-1 (2.303 RT)-1. The study of the
potential energy surface at various theory levels showed that
the density functional B3LYP with the basis set 6-31+G**
was adequate and provided results in accord with the
experimental values. The results of the theoretical calculation
results appears to support the proposed reaction mechanism
in which the substrate N-benzylglycine ethyl ester first
decomposes to ethylene in a rate-determining step through a
cyclic six-member TS to produce the amino acid N-
benzylglycine followed by a rapid decarboxylation to benzyl
methylamine. The reaction is governed by the breaking of
the O-Calkyl bond, which is more advanced in the TS than
(18) Benson, S. W. The Foundations of Chemical Kinetics; Mc-Graw-
Hill: New York, 1960.
(19) O’Neal, H. E.; Benson, S. W. J. Phys. Chem. 1967, 71, 2903–
2921. Benson, S. Thermochemical Kinetics; John Wiley & Sons: New York,
1968.
(20) Lendvay, G. J. Phys. Chem. 1989, 93, 4422–4429.