Journal of the American Chemical Society
Communication
(8) Rao, J.; Khan, A. J. Am. Chem. Soc. 2013, 135, 14056.
To summarize, a new family of amphiphilic PEG-dendron
hybrids that can self-assemble into enzyme-responsive micellar
nanocarriers were synthesized through a very efficient and
simple synthetic methodology. The utilization of an enzyme
responsive dendron allowed for unprecedented control over the
structure and monodispersity of the stimulus-responsive block
and enabled a detailed mechanistic study. The disassembly
mechanism proceeded through equilibrium dependent enzy-
matic degradation, which is in good agreement with other
enzyme-responsive systems.15 As the disassembly and release
rates depended on the CMC of the amphiphilic hybrids, the
release rates can be simply tuned by adjusting the length of the
PEG block. Such enzyme-responsive hybrids and their self-
assembled micelles have great potential in the field of drug
delivery. Further studies of dendrons of various generations and
end groups are currently in progress.
(9) Gitsov, I. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5295.
(10) Amir, R. J.; Danieli, E.; Shabat, D. Chem.Eur. J. 2007, 13, 812.
(11) Dijkgraaf, I.; Anneloes, R. Y.; Soede, A.; Annemarie, D. C.; van
Esse, G. W.; Brouwer, A. J.; Corstens, F. H. M.; Boerman, O. C.;
Rijkers, D. T. S.; Liskamp, R. M. J. Org. Biomol. Chem. 2007, 5, 935.
(12) Fairbanks, B. D.; Sims, E. A.; Anseth, K. S.; Bowman, C. N.
Macromolecules 2010, 43, 4113.
(13) Leenders, C. M. A.; Albertazzi, L.; Mes, T.; Koenigs, M. M. E.;
Palmans, R. A.; Meijer, E. W. Chem. Commun. 2013, 49, 33.
(14) Yesilyurt, V.; Ramireddy, R.; Thayumanavan, S. Angew. Chem.,
Int. Ed. 2011, 50, 3038.
(15) Raghupathi, K.; Azagarsamy, M.; Thayumanavan, S. Chem.
Eur. J. 2011, 17, 11752.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental information, characterization data, and
control experiments. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
⊥A.J.H. and I.R. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support has been provided by the Allon fellowship
(The Council for Higher Education of Israel) and TAU Vice-
president seed money. R.B. acknowledges the support of Israel
Science Foundation (Grant 571/11). R.J.A. thanks Prof. Moshe
Portnoy for his support during the establishment of Amir’s
laboratory and Dr. Elizabeth Amir for her helpful comments.
REFERENCES
■
(1) (a) Mai, Y.; Eisenberg, A. Chem. Soc. Rev. 2012, 41, 5969.
(b) Kataoka, K.; Harada, A.; Nagasaki, Y. Adv. Drug Delivery Rev. 2012,
64, 37. (c) Rosler, A.; Vandermeulen, G.; Klok, H.-A. Adv. Drug
̈
Delivery Rev. 2012, 64, 270. (d) Roy, D.; Cambre, J. N.; Sumerlin, B. S.
Prog. Polym. Sci. 2010, 35, 278.
(2) (a) Lundberg, P.; Lynd, N.; Zhang, Y.; Zeng, X.; Krogstad, D.;
Paffen, T.; Malkoch, M.; Nystrom, A.; Hawker, C. Soft Matter 2013, 9,
̈
82. (b) Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J. J. Am. Chem. Soc.
2004, 126, 11936.
(3) (a) Lee, H.; Lee, J.; Poon, Z.; Hammond, P. Chem. Commun.
2008, 3726. (b) Andre, X.; Zhang, M.; Mueller, A. Macromol. Rapid
Commun. 2005, 26, 558.
(4) (a) Lee, H.-I.; Wu, W.; Oh, J. K.; Mueller, L.; Sherwood, G.;
Peteanu, L.; Kowalewski, T.; Matyjaszewski, K. Angew. Chem., Int. Ed.
2007, 46, 2453. (b) Muraoka, T.; Koh, C.-Y.; Cui, H.; Stupp, S. I.
Angew. Chem., Int. Ed. 2009, 48, 5946.
(5) Loh, X.; del Barrio, J. S.; Toh, P.; Lee, T.-C.; Jiao, D.; Rauwald,
U.; Appel, E.; Scherman, O. Biomacromolecules 2011, 13, 84.
(6) Zelzer, M.; Todd, S. J.; Hirst, A. R.; McDonald, T. O.; Ulijn, R. V.
Biomater. Sci. 2013, 1, 11.
(7) (a) Ku, T.-H.; Chien, M.-P.; Thompson, M. P.; Sinkovits, R. S.;
Olson, N. H.; Baker, T. S.; Gianneschi, N. C. J. Am. Chem. Soc. 2011,
133, 8392. (b) Amir, R. J.; Zhong, S.; Pochan, D. J.; Hawker, C. J. J.
Am. Chem. Soc. 2009, 131, 13949.
7534
dx.doi.org/10.1021/ja413036q | J. Am. Chem. Soc. 2014, 136, 7531−7534