Magnetic Nanoparticle Supported Second Generation Hoveyda–Grubbs Catalyst
FULL PAPERS
1
9-Octadecene: H NMR (CDCl3): d=0.89 (t, 6H, 2CH3),
149.80 (2C, CH2CH=CHCO2), 167.16 (1C, CO2): EI-MS:
m/z=221.15 (M+ +Na+).
1.29–1.33 (br. m, 24H, 12CH2), 1.97–2.02 (m, 4H,
2
CH2CH=), 5.40–5.42 (m, 2H,CH=CH); 13C NMR (CDCl3):
d=14.12 (2C, 2CH3-), 22.69 (2C, 2CH2CH3), 29.17, 29.32,
29.50, 29.66, 31.91, 32.61 (12C, 12CH2), 130.36 (2C, 2CH=).
Dimethyl 9-octadecene-1,18-dioate: 1H NMR (CDCl3):
d=1.28–1.29 (br. m, 16H,8CH2), 1.59–1.63 (br. t, 4H,
2CH2), 1.95–1.96 (br. m, 4H, 2CH2), 2.30 (t, 4H, 2CH2),
3.67 (s, 6H, 2CO2CH3), 5.36–5.38 (m, 2H, CH=); 13C NMR
(CDCl3): d=24.95, 28.94, 29.11, 32.55, 34.11 (12C, 12CH2),
51.45 (2C, 2CH2CO2), 130.32 (2C, 2CH=), 174.36 (2C,
2CO2); EI-MS: m/z=363.25 (M+ +Na+).
Dimethyl undec-2-ene-1,11-dioate:1H NMR (CDCl3): d=
1.31 (br. s, 6H, 3CH2), 1.45 (br. s, 2H, CH2), 1.62 (br. s, 2H,
CH2), 2.17–2.22 (dt, 2H, CH2), 2.28–2.32 (t, 2H, CH2CO2),
3.67 (s, 3H, CO2CH3), 3.72 (s, 3H, CO2CH3), 5.80–5.83
(d,1H, =CHCO2), 6.93–6.70 (m, 1H, CH=CHCO2);
13C NMR (CDCl3): d=24.89, 27.95, 28.92, 29.01, 32.17, 34.04
(7C, 7CH2, one signal is overlapped), 51.37 (2C,
2CO2CH3), 120.91, 149.65 (2C, CH=CH), 167.15, 174.22
(2C, 2CO2); EI-MS: m/z=265.15 (M+ +Na+).
Acknowledgements
Self-Metathesis of Macro-monomer using 4 as
Catalyst
This work was supported by Institute of Chemical and Engi-
neering Sciences (ICES), Singapore. We are also grateful for
the contributions made by our colleague Dr. Ang Thiam
Peng at ICES.
A similar procedure to the self-metathesis of methyl oleate
was used to conduct the self-metathesis of macro-monomer.
From 1.2 g (68.6 mmol, based on MW) of the above prepared
macro-monomer, with 4 (2.5 mg, 0.70 mmol) ([macro-mono-
mer]mol/[Ru]mol =98) in a mixture of (DMA) (5 mL) and di-
chloromethane (10 mL) the polymer was obtained after pre-
cipitation with cold methanol from dichloromethane and
drying in vacuum at 508C for 2 days; isolated yield: 1.10 g
(90%, TOF=29 hÀ1).
The procedure above was also conducted with second
generation Grubbs catalyst. From 1.2 g (68.6 mmol, based on
MW) of the above prepared macro-monomer, with second
generation Grubbs catalyst (0.37 mg, 0.44 mmol) ([macro-
monomer]mol/[2nd generation Grubbs catalyst]mol =156), the
polymer was obtained after drying; isolated yield: 1.0 g
(82%; TOF=43 hÀ1). The product was subjected to analysis
with NMR, IR and GPC (MW=3.56ꢁ104, DPI=1.74).
1H NMR (CDCl3): d=1.58 (d, 3H, CH3), 5.17 (q, 1H, CH);
13C NMR (CDCl3): d=16.65 (1C, CH3), 69.01 (1C, CHO),
References
[1] For recent reviews, see: a) M. R. Buchmeiser, New J.
Chem. 2004, 28, 549–557; b) M. R. Buchmeiser, Chem.
Rev. 2009, 109, 303–321; c) H. Chayanant, H.-L. Su,
S. B. Hassan, E. B. David, Org. Lett. 2009, 11, 665–667;
d) H. Chayanant, J. Tian, S. B. Hassan, E. B. David,
Org. Lett. 2007, 9, 3259–3261; e) B. G. Steven, S. K.
Jason, L. G. Brian, A. H. Hoveyda, J. Am. Chem. Soc.
2000, 122, 8168–8179; f) B. V. Berlo, K. Houthoofd,
B. F. Sels, P. A. Jacobs, Adv. Synth. Catal. 2008, 350,
1949–1953; g) J. O. Krause, O. Nuyken, K. Wurst,
M. R. Buchmeiser, Chem. Eur. J. 2004, 10, 777–784;
h) M. Mayr, M. R. Buchmeiser, K. Wurst, Adv. Synth.
Catal. 2002, 344, 712–719; i) K. Melis, D. De Vos, P.
Jacobs, F. Verpoort, J. Mol. Cat. A Chem. 2001, 169,
47–56; j) A. Furstner, Angew. Chem. 2000, 112, 3140–
3172; Angew. Chem. Int. Ed. 2000, 39, 3012–3043;
k) R. R. Schrock, A. H. Hoveyda, Angew. Chem. 2003,
115, 4740–4782; Angew. Chem. Int. Ed. 2003, 42, 4592–
4633; l) K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew.
Chem. 2005, 117, 4564–4601; Angew. Chem. Int. Ed.
2005, 44, 4490–4527; m) A. G. M. Barrett, B. T. Hop-
kins, J. Kobberling, Chem. Rev. 2002, 102, 3301–3324;
n) S. Pawel, M. Marc, G. Karol, Chem. Soc. Rev. 2008,
37, 2433–2442; o) R. M. Brian, M. B. Kevin, C.-M.
Ana, L. M. Benjamin, Org. Lett. 2005, 7, 733–736;
p) R. Diane, C. Herve, C. Yann, G. Lukasz, G. Karol,
M. Marc, J. Organomet. Chem. 2006, 691, 5397–5405;
q) V. Kati, M. Simon, K. Katrin, B. Siegfried, J. Orga-
nomet. Chem. 2006, 691, 5267–5277; r) B. Michal, B.
Robert, C. Maciej, L. Noel, L. Guy, A. Dieter, G.
Karol, J. Am. Chem. Soc. 2006, 128, 12652–13653;
s) R. Castarlenas, C. Vovard, C. Fischmeister, P. H. Dix-
neuf, J. Am. Chem. Soc. 2006, 128, 4079–4089.
169.62 (1C, CO2); IR (KBr pellet): n=3651ACTHUNRTGNEUNG(w, s), 3560 (w,
s), 3510 (w, s), 2998 (m, s), 2947 (m, s), 2087 (vw, br), 1760
(vs, s, nCO), 1457 (s, s), 1386 (s, s), 1361 (s, s), 1213 (vs, s),
1186 (vs, s), 1134 (vs, s), 1093 (vs, s), 1045 (s, s), 957 (w, s),
921 (w, s), 872 (m, s), 756 (m, s), 694 (m, s), 507 cmÀ1 (w, s).
Cross-Metathesis of Methyl Oleate with Methyl
Acrylate using 4 as Catalyst
A literature method was used to perform the reaction.[8f]
Catalyst 4 (115 mg, 32.2 mmol,) was added to a mixture of
methyl acrylate (14.0 g, 0.16 mol,) and methyl oleate (4.74 g,
16 mmol) ([methyl oleate]mol/[Ru]mol =497) with continuous
stirring for 10 min. The reaction mixture was stirred magnet-
ically at 458C for 25 h. The excess of methyl acrylate was
evaporated under vacuum and the residue was purified by
TLC developed with hexane/diethyl ether (v/v=4/1) to pro-
duce methyl undec-2-enoate (yield: 1.90 g) and dimethyl
undec-2-ene-1,11-dioate (yield: 2.32 g), respectively in an
isolated yield of 60% (TOF=12 hÀ1).
Methyl undec-2-enoate: 1H NMR (CDCl3): d=0.88 (t,
3H, CH3), 1.27–1.28 (br, 10H, 5CH2), 1.43–1.47 (m, 2H,
CH2), 2.17–2.22 (dt, 2H, CH2C=), 3.72 (s, 3H, OCH3), 5.80–
5.84 (d, 1H, =CHCO2), 6.94–7.01 (m, 1H, CH2CH=C);
13C NMR (CDCl3): d=14.05, 22.62, 27.99, 29.11, 29.17,
29.32, 31.81, 32.20 (7C, 7CH2), 51.31 (1C, CH3CO2), 120.77,
[2] a) J. C. Mol, Green Chem. 2002, 4, 5–13; b) A. Corma,
S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411–2502;
c) J. C. Mol, J. Mol. Cat. A: Chemical 2004, 213, 39–45;
d) J. C. Mol, Topics in Catal. 2004, 27, 97–104; e) J.
Patel, S. Mujcinovic, W. R. Jackson, A. J. Robinson,
A. K. Serelis, C. Such, Green Chem. 2006, 8, 450–454;
Adv. Synth. Catal. 2009, 351, 2650 – 2656
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2655