2490
G. Mehta et al. / Tetrahedron Letters 43 (2002) 2487–2490
Soc., Chem. Commun. 1992, 1711; (d) Mehta, G.; Ravikr-
tilted away from the olefinic side4b and the sulfoxide
bearing 5-membered ring projects outwards.
ishna, C.; Ganguly, B.; Chandrasekhar, J. J. Chem. Soc.,
Chem. Commun. 1997, 75; (e) Mehta, G.; Ravikrishna,
C.; Kalyanaraman, P.; Chandrasekhar, J. J. Chem. Soc.,
Perkin Trans. 1 1998, 1895; (f) Halterman, R. L.;
McEvoy, M. A. J. Am. Chem. Soc. 1990, 112, 6690; (g)
Wipf, P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 11678;
(h) Fraser, R. R.; Faibish, N. C.; Kong, F.; Bednarski, F.
J. Org. Chem. 1997, 62, 6164; (i) Li, H.; le Noble, W. J.
Recl. Trav. Chim. Pays-Bas 1992, 111, 199; (j) Mehta, G.;
Singh, S. R.; Gagliardini, V.; Priyakumar, U. D.; Sastry,
G. N. Tetrahedron Lett. 2001, 42, 8527.
8. All new compounds reported here were fully character-
1
ized on the basis of complementary spectroscopic (IR, H
&
13C NMR and MS) and analytical data. 13C NMR l
(75 MHz, CDCl3); 15: 81.7 (CH), 45.6 (CH), 41.5 (CH),
28.6 (CH2), 27.0 (CH2), 19.9 (CH2). 16: 81.1 (CH), 68.9
(CH2), 44.7 (CH), 41.7 (CH), 20.1 (CH2). 17: 81.7 (CH),
45.9 (CH), 45.8 (CH), 33.4 (CH2), 19.4 (CH2). 18:
(CD3OD): 53.0 (CH2), 45.2 (CH), 43.1 (CH), 20.5 (CH2).
19: (CD3OD): 81.7 (CH), 53.6 (CH2), 45.6 (CH), 39.8
(CH), 20.8 (CH2). 20: 178.1 (CO), 80.0 (CH), 68.4 (CH2),
44.5 (CH), 43.2 (CH), 43.1 (CH), 37.2 (CH), 22.2 (CH2),
19.0 (CH2). 21: 84.9 (CH), 44.8 (CH), 42.2 (CH), 29.6
(CH2), 26.3 (CH2), 20.4 (CH2). 22: 84.5 (CH), 68.4 (CH2),
44.4 (CH), 42.1 (CH), 20.4 (CH2). 23: 84.9 (CH), 46.6
(CH), 45.4 (CH), 32.7 (CH2), 19.8 (CH2). 24 (CD3OD):
85.6 (CH), 52.7 (CH2), 44.4 (CH), 44.2 (CH), 21.0 (CH2).
25: 82.8 (CH), 52.2 (CH2), 43.7 (CH), 37.5 (CH), 19.8
(CH2). 26: 179.2 (CO), 83.1 (CH), 67.8 (CH2), 45.1 (CH),
44.3 (CH), 44.2 (CH), 39.1 (CH), 22.5 (CH2), 19.3 (CH2).
27: 133.6 (CH), 89.8 (CH), 52.4 (CH), 44.6 (CH), 43.2
(CH), 28.7 (CH2), 28.6 (CH2). 28: 132.4 (CH), 89.0 (CH),
69.8 (CH2), 51.8 (CH), 43.9 (CH). 29: 134.4 (CH), 90.7
(CH), 52.3 (CH), 49.5 (CH), 34.9 (CH2). 30: 133.6 (CH),
90.4 (CH), 54.7 (CH2), 51.5 (CH), 43.6 (CH). 31: 134.7
(CH), 89.1 (CH), 54.5 (CH2), 52.3 (CH), 36.4 (CH). 32:
177.0 (CO), 134.0 (CH), 131.7 (CH), 88.1 (CH), 70.0
(CH2), 51.8 (CH), 50.4 (CH), 43.7 (CH), 36.0 (CH). 33:
135.0 (CH), 88.8 (CH), 50.0 (CH), 44.1 (CH), 30.7 (CH2),
28.0 (CH2). 34: 133.4 (CH), 87.8 (CH), 69.3 (CH2), 49.9
(CH), 45.1 (CH). 35: 135.6 (CH), 90.3 (CH), 51.0 (CH),
49.6 (CH), 33.6 (CH2). 36: 135.2 (CH), 89.2 (CH), 54.3
(CH2), 49.4 (CH), 45.3 (CH). 37: 137.2 (CH), 87.9 (CH),
54.8 (CH2), 51.8 (CH), 38.4 (CH). 38: 179.0 (CO), 134.9
(CH), 133.3 (CH), 86.7 (CH), 69.5 (CH2), 50.2 (CH), 49.9
(CH), 45.5 (CH), 37.8 (CH).
3. (a) Klein, J. Tetrahedron Lett. 1973, 4307; (b) Paddow-
Row, M. N.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc.
1992, 114, 10638; (c) Cherest, M.; Felkin, H.; Prudent, N.
Tetrahedron Lett. 1968, 2199; (d) Cieplak, A. S. J. Am.
Chem. Soc. 1981, 103, 4540; (e) Frenking, G.; Kohler, K.
F.; Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30,
1146; (f) Ohwada, T. J. Am. Chem. Soc. 1992, 114, 8818;
(g) Jeyaraj, D.; Yadav, A. A.; Yadav, V. K. Tetrahedron
Lett. 1997, 38, 4483; (h) Tomoda, S.; Senju, T. Tetra-
hedron 1997, 53, 9057.
4. (a) Mehta, G.; Khan, F. A. Tetrahedron Lett. 1992, 33,
3065; (b) Kumar, V. A.; Venkatesan, K.; Ganguly, B.;
Chandrasekhar, J.; Khan, F. A.; Mehta, G. Tetrahedron
Lett. 1992, 33, 3069.
5. (a) Mehta, G.; Praveen, M. Tetrahedron Lett. 1992, 33,
1759; (b) Praveen, M. Ph.D. Thesis, University of Hyder-
abad, India, 1995.
6. For distal heteroatom effect on face selectivity during
hydride addition, see, (a) Hahn, J.; le Noble, W. J. Am.
Chem. Soc. 1992, 114, 1916; (b) Mehta, G.; Khan, F. A.;
Ganguly, B.; Chandrasekhar, J. J. Chem. Soc., Perkin
Trans. 2 1994, 2275; (c) Dimitroff, M.; Fallis, A. G.
Tetrahedron Lett. 1998, 39, 2527 and 2531; (d) Chao, I.;
Shih, J. H.; Wu, H. -J. J. Org. Chem. 2000, 22, 7523.
7. Substrates 3–14 were prepared from the Diels–Alder
adducts of 5,5-dimethoxy-1,2,3,4-tetrachlorocyclopent-
adiene with either maleic anhydride or cyclopentadiene
through routine but non-trivial functional group transfor-
mations. The stereostructures of sulfoxides 6, 7, 12, and
13 were secured through X-ray crystal structure determi-
nation of 13 and its correlation with 7. In the solid state,
the C1ꢀC10ꢀC7 bridge of the norbornyl portion of 13 is
9. Dewar, M. J. S.; Theil, W. J. Am. Chem. Soc. 1977, 99,
4899.
10. Glendening, E. D.; Reed, A.; Carpenter, E. J. E.; Wein-
hold, F. NBO, Version 3.1.
11. Details of these calculations and additional computa-
tional studies will be reported in a full paper.