Organic Letters
Letter
G.-L.; Pang, X.; Qi, L.; Ma, W.-Y.; Zhao, Z.-Z.; Duan, J.; Su, P.; Liu,
X.-Y.; Shu, X.-Z. Highly Enantioselective Cross-Electrophile Aryl-
alkenylation of Unactivated Alkenes. J. Am. Chem. Soc. 2019, 141,
7637−7643.
(6) For examples of Ni-catalyzed reductive dicarbofunctionalization
of activated alkenes, see: (a) Qin, X.; Lee, M. W. Y.; Zhou, J. S.
Nickel-Catalyzed Asymmetric Reductive Heck Cyclization of Aryl
Halides to Afford Indolines. Angew. Chem., Int. Ed. 2017, 56, 12723−
12726. (b) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-Catalyzed
Enantioselective Reductive Diarylation of Activated Alkenes by
Domino Cyclization/Cross-Coupling. J. Am. Chem. Soc. 2018, 140,
12364−12368.
Catalyzed Decarboxylative Chlorination of Aliphatic Carboxylic
Acids. J. Am. Chem. Soc. 2012, 134, 4258−4263. (g) Bhadra, S.;
Dzik, W. I.; Goossen, L. J. Decarboxylative Etherification of Aromatic
Carboxylic Acids. J. Am. Chem. Soc. 2012, 134, 9938−9941. (h) Yin,
F.; Wang, Z.; Li, Z.; Li, C. Silver-Catalyzed Decarboxylative
Fluorination of Aliphatic Carboxylic Acids in Aqueous Solution. J.
Am. Chem. Soc. 2012, 134, 10401−10404. (i) Bhadra, S.; Dzik, W. I.;
Gooβen, L. J. Synthesis of Aryl Ethers from Benzoates through
Carboxylate-Directed C−H-Activating Alkoxylation with Concom-
itant Protodecarboxylation. Angew. Chem., Int. Ed. 2013, 52, 2959−
2962. (j) Song, S.; Knauber, T.; Gooβen, L. J. Decarboxylative Cross-
Coupling of Mesylates Catalyzed by Copper/Palladium Systems with
Customized Imidazolyl Phosphine Ligands. Angew. Chem., Int. Ed.
2013, 52, 2954−2958. (k) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett,
J. A.; Doyle, A. G.; MacMillan, D. W. C. Dual Catalysis. Merging
Photoredox with Nickel Catalysis: Coupling of α-Carboxyl sp3-
Carbons with Aryl Halides. Science 2014, 345, 437−440. (l) Zuo, Z.;
MacMillan, D. W. C. Decarboxylative Arylation of α-Amino Acids via
Photoredox Catalysis: A One-Step Conversion of Biomass to Drug
Pharmacophore. J. Am. Chem. Soc. 2014, 136, 5257−5260. (m) Chu,
L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Decarboxylative Arylation
of α-Amino Acids via Photoredox Catalysis: A One-Step Conversion
of Biomass to Drug Pharmacophore. J. Am. Chem. Soc. 2014, 136,
10886−10889. (n) Hu, F.; Shao, X.; Zhu, D.; Lu, L.; Shen, Q. Silver-
Catalyzed Decarboxylative Trifluoromethylthiolation of Aliphatic
Carboxylic Acids in Aqueous Emulsion. Angew. Chem., Int. Ed.
2014, 53, 6105−6109. (o) Lang, S. B.; O’Nele, K. M.; Douglas, J. T.;
Tunge, J. A. Decarboxylative Allylation of Amino Alkanoic Acids and
Esters via Dual Catalysis. J. Am. Chem. Soc. 2014, 136, 13606−13609.
(p) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. Merging
Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of
Carboxylic Acids with Vinyl Halides. J. Am. Chem. Soc. 2015, 137,
624−627. (q) Kan, J.; Huang, S.; Lin, J.; Zhang, M.; Su, W. Silver-
Catalyzed Arylation of (Hetero)arenes by Oxidative Decarboxylation
of Aromatic Carboxylic Acids. Angew. Chem., Int. Ed. 2015, 54, 2199−
2203. (r) Zhang, Y.; Zhao, H.; Zhang, M.; Su, W. Carboxylic Acids as
Traceless Directing Groups for the Rhodium(III)-Catalyzed Decar-
boxylative C−H Arylation of Thiophenes. Angew. Chem., Int. Ed.
2015, 54, 3817−3821. (s) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.;
Chen, X.; Lu, L.-Q.; Xiao, W.-J. Decarboxylative Alkynylation and
Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible-
Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 11196−
11199. (t) Le, C. C.; MacMillan, D. W. C. Merging Photoredox and
Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids
with Vinyl Halides. J. Am. Chem. Soc. 2015, 137, 11938−11941.
(u) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W.
C. Metallaphotoredox-Catalysed sp3−sp3Cross-Coupling of Carbox-
ylic Acids with Alkyl Halides. Nature 2016, 536, 322−325. (v) Liu, Z.-
J.; Lu, X.; Wang, G.; Li, L.; Jiang, W.-T.; Wang, Y.-D.; Xiao, B.; Fu, Y.
Directing Group in Decarboxylative Cross-Coupling: Copper-
Catalyzed Site-Selective C−N Bond Formation from Nonactivated
Aliphatic Carboxylic Acids. J. Am. Chem. Soc. 2016, 138, 9714−9719.
(w) Cui, L.; Chen, H.; Liu, C.; Li, C. Silver-Catalyzed Decarboxylative
Allylation of Aliphatic Carboxylic Acids in Aqueous Solution. Org.
Lett. 2016, 18, 2188−2191. (x) Zuo, Z.; Cong, H.; Li, W.; Choi, J.;
Fu, G. C.; MacMillan, D. W. C. Enantioselective Decarboxylative
Arylation of α-Amino Acids via the Merger of Photoredox and Nickel
Catalysis. J. Am. Chem. Soc. 2016, 138, 1832−1835. (y) Zhang, J.;
Shrestha, R.; Hartwig, J. F.; Zhao, P. A Decarboxylative Approach for
Regioselective Hydroarylation of Alkynes. Nat. Chem. 2016, 8, 1144−
1151. (z) Kumar, N. Y. P.; Bechtoldt, A.; Raghuvanshi, K.;
Ackermann, L. Ruthenium(II)-Catalyzed Decarboxylative C−H
Activation: Versatile Routes to meta-Alkenylated Arenes. Angew.
Chem., Int. Ed. 2016, 55, 6929−6932. (aa) Tan, X.; Liu, Z.; Shen, H.;
Zhang, P.; Zhang, Z.; Li, C. Silver-Catalyzed Decarboxylative
Trifluoromethylation of Aliphatic Carboxylic Acids. J. Am. Chem.
Soc. 2017, 139, 12430−12433. (ab) Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu,
L.; Zhao, X.; Jiang, Z. Conjugate Addition−Enantioselective
Protonation of N-Aryl Glycines to α-Branched 2-Vinylazaarenes via
(7) For reviews on cross-electrophile coupling, see: (a) Everson, D.
A.; Weix, D. J. Cross-Electrophile Coupling: Principles of Reactivity
and Selectivity. J. Org. Chem. 2014, 79, 4793−4798. (b) Gu, J.; Wang,
X.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Alkyl
Halides with Other Electrophiles: Concept and Mechanistic
Considerations. Org. Chem. Front. 2015, 2, 1411−1421. (c) Weix,
D. J. Methods and Mechanisms for Cross-Electrophile Coupling of
Csp2Halides with Alkyl Electrophiles. Acc. Chem. Res. 2015, 48,
1767−1775. (d) Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed
Reductive Couplings. Top. Curr. Chem. 2016, 374, 43. (e) Richmond,
E.; Moran, J. Recent Advances in Nickel Catalysis Enabled by
Stoichiometric Metallic Reducing Agents. Synthesis 2018, 50, 499−
513.
(8) For reviews on decarboxylative cross-coupling, see: (a) Rodrí-
guez, N.; Goossen, L. J. Decarboxylative coupling reactions: a modern
strategy for C−C-bond formation. Chem. Soc. Rev. 2011, 40, 5030−
5048. (b) Shang, R.; Liu, L. Transition Metal-Catalyzed Decarbox-
ylative Cross-Coupling Reactions. Sci. China: Chem. 2011, 54, 1670−
1687. (c) Dzik, W. I.; Lange, P. P.; Gooβen, L. J. Carboxylates as
Sources of Carbon Nucleophiles and Electrophiles: Comparison of
Decarboxylative and Decarbonylative Pathways. Chem. Sci. 2012, 3,
2671−2678. (d) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Visible-Light-
Induced Decarboxylative Functionalization of Carboxylic Acids and
Their Derivatives. Angew. Chem., Int. Ed. 2015, 54, 15632−15641.
(e) Guo, L.-N.; Wang, H.; Duan, X.-H. Recent Advances in Catalytic
Decarboxylative Acylation Reactions via a Radical Process. Org.
Biomol. Chem. 2016, 14, 7380−7391. (f) Liu, P.; Zhang, G.; Sun, P.
Transition Metal-Free Decarboxylative Alkylation Reactions. Org.
Biomol. Chem. 2016, 14, 10763−10777. (g) Jamison, C. R.; Overman,
L. E. Fragment Coupling with Tertiary Radicals Generated by Visible-
Light Photocatalysis. Acc. Chem. Res. 2016, 49, 1578−1586. (h) Li, Y.;
Ge, L.; Muhammad, M. T.; Bao, H. Recent Progress on Radical
Decarboxylative Alkylation for Csp3−C Bond Formation. Synthesis
2017, 49, 5263−5284. (i) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-
Catalyzed Decarboxylative C−H Functionalization. Chem. Rev. 2017,
117, 8864−8907. (j) Patra, T.; Maiti, D. Decarboxylation as the Key
Step in C−C Bond-Forming Reactions. Chem. - Eur. J. 2017, 23,
7382−7401. (k) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I.
The Use of Carboxylic Acids as Traceless Directing Groups for
Regioselective C−H Bond Functionalisation. Chem. Commun. 2017,
53, 5584−5597.
(9) For selected examples of catalytic decarboxylative cross-coupling
involving carboxylic acids, see: (a) Myers, A. G.; Tanaka, D.;
Mannion, M. R. Development of a Decarboxylative Palladation
Reaction and Its Use in a Heck-type Olefination of Arene
Carboxylates. J. Am. Chem. Soc. 2002, 124, 11250−11251.
(b) Gooβen, L. J.; Deng, G.; Levy, L. M. Synthesis of Biaryls via
Catalytic Decarboxylative Coupling. Science 2006, 313, 662−664.
(c) Goossen, L. J.; Rodríguez, N.; Linder, C. Decarboxylative Biaryl
Synthesis from Aromatic Carboxylates and Aryl Triflates. J. Am. Chem.
Soc. 2008, 130, 15248−15249. (d) Cornella, J.; Righi, M.; Larrosa, I.
Carboxylic Acids as Traceless Directing Groups for Formal meta-
Selective Direct Arylation. Angew. Chem., Int. Ed. 2011, 50, 9429−
9432. (e) Goossen, L. J.; Zimmermann, B.; Knauber, T. Palladium/
Copper-Catalyzed Decarboxylative Cross-Coupling of Aryl Chlorides
with Potassium Carboxylates. Angew. Chem., Int. Ed. 2008, 47, 7103−
7106. (f) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. Silver-
F
Org. Lett. XXXX, XXX, XXX−XXX