4
36
Can. J. Chem. Vol. 82, 2004
+
2
β δ [L −abu] [H ]
0
0
t
[
19] k′2 =
+
+ 2
+
−
+
+2
+ 2+
+2
β (1 + β [H ] + β [H ] ) + α [H ][MnO ] + β δ [H ][Mn ] + β δ [H ] [Mn ]
0
1
2
1
4
0 1
0 2
where the notation employed in eq. [14] is conserved, and in
addition
7. L.M. Bharadwaj and P.C. Nigam. Ind. J. Chem. Ser. A(8), A,
793 (1981).
8
9
. V.S. Rao, B. Sethuram, and T.N. Rao. Int. J. Chem. Kinet. 11,
165 (1979).
. V.S. Rao, B. Sethuram, and T.N. Rao. Oxid. Commun. 9, 11
δ = K K K k
0
1
2
5
6
δ = K K
1
2
5
(
1986).
1
0. U.D. Mudaliar, V.R. Chourey, R.S. Verma, and V.R. Shastry.
δ = K K K
2
1
2
5
Ind. J. Chem. Soc. 60, 561 (1983).
This rate law, along with the one proposed for the
uncatalyzed process, is in accord with all experimental re-
sults presented in this article; namely, first-order dependence
11. H.M. Girgis, R.M. Hassan, and A.S. El-Shahawy. Bull. Fac.
Sci. Univ. 16(1), 41 (1987).
1
2. R.M. Hassan, M.A. Mousa, and M.H. Wahdan., J. Chem. Soc.
on Mn+ ions, permanganate ions, and the amino acid and
2
Dalton. Trans. 3, 605 (1988).
13. H. Iloukani and H. Bahrami. Int. J. Chem. Kinet. 31, 95 (1999).
+
2
inverse dependence of k′ on permanganate and Mn ion
2
1
1
1
1
1
1
4. B.R. Sahu, V.R. Chourey, S. Pandey, L.V. Shastry, and V.R.
concentrations, as shown in the k′ expression.
2
Shastry. Ind. J. Chem. Soc. 76, 131 (2000).
5. F.J. Andrés Ordax, A. Arrizabalaga, and J.I. Martinez de
Ilarduya. An. Quim. 80, 531 (1984).
6. F.J. Andrés Ordax, A. Arrizabalaga, and R. Martinez Perez de
mendiola. Studia Chemica, 11, 303 (1986).
7. F.J. Andrés Ordax, A. Arrizabalaga, and K. Ortega. An. Quim.
Owing to the complexity of the proposed mechanism,
evaluation of the values of the rate constants corresponding
to the reaction rate-determining steps for both processes has
not been possible. Thus, the activation parameters reported
are associated with reaction pseudo-rate constants k′ and k′ ,
1
2
and these values cannot be attributed to any particular reac-
tion step.
8
5, 218 (1989).
8. J.F. Perez Benito, F. Mata Perez, and E. Brillas. Can. J. Chem.
5(10), 2329 (1987).
6
9. E. Brillas, J.A. Garrido, and J.F. Perez Benito. Collect. Czech.
Conclusions
Chem. Comun. 53, 479 (1988).
The kinetics of the permanganate oxidation process of L-
α-amino-n-butyric acid in strong acid media was investigated
using a spectrophotometric technique. Addition of manga-
nese sulfate(II) to the reaction mixture raised the reaction
rate. The sigmoid profile observed for permanganate absorp-
tion variation at 525 nm vs. time was completely trans-
20. J.A. Garrido, J.F. Perez Benito, R.M. Rodrigouez, J. De
Andrés, and E. Brillas. J. Chem. Res. 11, 380 (1987).
21. J. De Andrés, E. Brillas, J.A. Garrido, and J.F. Perez Benito. J.
Chem. Soc. Perkin Trans. 2, 107 (1988).
22. R.M. Rodrigouez, J. De Andrés, E. Brillas, J.A. Garrido, and
J.F. Perez Benito. New J. Chim. 2(2–3), 143 (1988).
2
2
2
2
2
2
2
3
3
3
3
3
3. J. De Andrés, E. Brillas, J.A. Garrido, and J.F. Perez Benito.
Gazz. Ital. 118, 203 (1988).
4. F.J. Andrés Ordax, A. Arrizabalaga, J. Casado, and R. Peche.
React. Kinet. Cattal. Lett. 44, 293 (1991).
5. F.J. Andrés Ordax, A. Arrizabalaga, R. Peche, and M.A.
Quintana. An. Quim. 87, 828 (1992).
formed to a linear one under conditions of [KMnO ] =
4
[
Mn(II)]. In the presence of manganese sulfate(II), by in-
creasing the amino acid concentration, the reaction rate was
increased. Thus, we report the first conclusive evidence of
an autocatalytic oxidation process of an amino acid in strong
+
2
acid media in which Mn species are responsible for the ef-
fect. The pseudo-order rate constants obtained for both the
catalytic and noncatalytic pathways when the amino acid
was in excess obeyed the Eyring relation. The presence of
free radicals was confirmed, and mechanisms satisfying ex-
perimental observations for both catalytic and noncatalytic
pathways were presented.
6. F.J. Andrés Ordax, A. Arrizabalaga, R. Peche, and M.A.
Quintana. An. Quim. 88, 440 (1992).
7. M.J. Insausti, F. Mata-pèrez, and M.P. Alvarez-macho. Int. J.
Chem. Kinet. 27, 507 (1995).
8. A. Arrizabalaga, F.J. Andrés Ordax, M.Y. Fernández Aránguiz,
and R. Peche. Int. J. Chem. Kinet. 28, 799 (1996).
9. A. Arrizabalaga, F.J. Andrés Ordax, M.Y. Fernández Aránguiz,
and R. Peche. Int. J. Chem. Kinet. 29, 181 (1997).
0. A.I. Vogel. Quimica analitica cuantitative. Vol. I. Kapelusz,
Buenos Aires. 1960. p. 382.
1. F. Felig. Spot tests in inorganic analysis. Elsevier, Amster-
dam.1972. p. 334.
2. F. Felig. Spot tests in inorganic analysis. Elsevier, Amster-
dam.1976. p. 199.
3. A.I. Vogel. Quimica analitica cuantitative. Vol. I. Kapelusz,
Buenos Aires. 1953. p. 250.
4. K.K. Banerji and P. Nath. Bull. Chem. Soc. Jap. 42, 2038
References
1
2
3
4
5
6
. R.S. Verma, M.J. Reddy, and R. Shastry. J. Chem. Soc. Perkin
Trans. 2, 469 (1976).
. A.A. Frost and R.G. Pearson. Kinetic and mechanisms. Wiley,
New York. 1961. p. 152.
. C.S. Ameta, P.N. Pande, H.L. Gupta, and H.C. Chowhhry.
Acta Phys. Chem. 26, 89 (1980).
. C.S. Ameta, P.N. Pande, H.L. Gupta, and H.C. Chowhhry. Z.
Phys. Chem. (Leipzig), 261, 1222 (1980).
. C.S. Ameta, P.N. Pande, H.L. Gupta, and H.C. Chowhhry. Z.
Phys. Chem. (Leipzig), 261, 802 (1980).
. C.S. Ameta, P.N. Pande, H.L. Gupta, and H.C. Chowhhry.
(
1969).
3
3
5. W.A. Waters. Q. Rev. Chem. Soc. 12, 277 (1958).
6. P.S. Radhakrishnanurti and M.D. Rao. Indian J. Chem. Soc. A,
1
5, 524 (1977).
Acta. Chim. Acad. Sci. Hung. 110, 7 (1982).
©
2004 NRC Canada