8
SAID ET AL.
SEM images were obtained using a JEOL electron
microscope (model JSM-5400 LV, Tokyo, Japan).
• The catalytic performance of the basaltic samples corre-
lates well with the acid site population on the catalyst
surface and the reaction rate constants.
Acidity measurements of the catalysts were carried out
by studying the conversion of IPA and the chemisorption of
basic molecules such as PY and DMPY, as previously
described by Said et al.[21,31–33] In this method, 0.3 g of the
basaltic sample (sandwiched between two plugs of glass
wool) was placed in a tubular electric furnace whose temper-
ature was adjusted and controlled by a K-type thermocouple
projecting under the charged catalyst. Nitrogen containing
4.5% IPA at the flow rate of 50 mL/min was allowed to pass
through the reactor. The analysis of the outlet feed was done
by a flame ionization detector (FID) on a proGC Unicam
instrument using a glass column of PEG (2 m). The amount
of pyridine desorption was calculated as follows: the catalyst
under investigation was presaturated with pyridine vapor for
7 days. This presaturated catalyst was then tested for IPA
dehydration at different reaction temperatures. The values of
the obtained conversions were then derived with respect to
the reaction temperature, and the derivative (ΔC/ΔT,
C being the conversion and T the reaction temperature) was
then plotted against the reaction temperature.
The liquid-phase esterification of CH3COOH and
CH3(CH2)2CH2OH was carried out in a round-bottom glass
flask (250 mL) connected with a water-cooled condenser, as
previously described.[18,41] The reaction temperature was
controlled using a thermostated heating mantle. Experiments
were carried out by varying the refluxing time, acid: alcohol
molar ratio, catalyst weight, and calcination temperature.
The reaction products were detected by an FID on the
proGC Unicam instrument using a glass column of 10%
APL (2 m). In the absence of the basaltic catalyst, blank
mixtures were also tested. The results showed that the only
product formed was n-butyl acetate. The percentage conver-
sion was estimated based on gas chromatographic analyses
using the method previously described by Kirumakki
et al.[41]
• The basaltic Isbil Volcano dust can be used as natu-
rally available and cheap catalyst for esterification
reactions.
REFERENCES
[1] S. S. Dash, K. M. Parida, J. Mol. Catal. A. 2007, 266, 88.
[2] M. N. Timofeva, M. M. Matrosova, B. M. Maksimov, V. A. Likholbov,
A. V. Golovin, R. J. Maksimovskaya, E. A. Paukshtis, Kinet. Catal. 2011,
42, 791.
[3] M. N. Timofeva, M. M. Matrosova, T. V. Reshetenko, L. B. Avdeeva,
A. A. Budeneva, A. B. Ayupov, E. A. Paukshtis, A. L. Chuvilin,
V. A. Volodin, V. A. Likholbov, J. Mol. Catal. A 2004, 211, 131.
[4] M. R. Altiokka, A. Citak, Appl. Catal. A 2003, 239, 141.
[5] B. Rabindran, A. Pandurangn, J. Mol. Catal. A 2005, 237, 146.
[6] W. T. Lu, C. S. Tan, Liquid-phase Int. Eng. Chem. Res. 2001, 40, 3281.
[7] A. Izci, F. Bodur, React. Funct. Polym. 2007, 67, 21458.
[8] I. Hoek, T. A. Nijhuis, A. I. Stankiewich, J. A. Moulijn, Appl. Catal. A
2004, 266, 109.
[9] S. R. Kirumakki, N. Nagaraju, S. Narayanan, Appl. Catal. A 2004, 273, 1.
[10] J. Wang, A. Wang, X. Tian, H. Wang, H. Xu, L. Yang, Appl. Clay Sci.
2017, 135, 596.
[11] K. M. Parida, S. Mallick, J. Mol. Catal. A 2007, 275, 77.
[12] A. A. Costa, P. R. S. Braga, J. L. de Macedo, J. A. Dias, S. C. L. Dias,
Micropor. Mesopor. Mater. 2012, 147, 142.
[13] Y.-M. Park, S.-H. Chung, H. J. Eom, J.-S. Lee, K.-Y. Lee, Biores. Technol.
2010, 101, 6589.
[14] M. Salavati-Niasari, T. Khosousi, S. Hydarzadeh, J. Mol. Catal. A 2005,
235, 150.
[15] E. Yilmaz, E. Sert, F. S. Atlay, Catal. Commu. 2017, 100, 48.
[16] S. K. Bhorodwaj, D. K. Dutta, Appl. Clay Sci. 2011, 53, 347.
[17] S. K. Bhorodwaj, M. G. Pathak, D. K. Dutta, Catal. Lett. 2009, 133, 185.
[18] A. A. Said, A. A.M. Aly, M. M. Abd El-Wahab, A. Abd El-Hafez,
M. N. Goda, in The Seventh Tokyo Conference on Advanced Catalytic Science
and Technology (TOCAT7), June 1–6, 2014, short communication.
[19] S. Ergul, F. Ferrante, P. Pisciella, A. Karamanov, M. Pelino, Ceramic Int.
2009, 35, 2789.
[20] M. Edmonds, P. J. Wallace, Elements 2017, 13, 29.
[21] A. A. Said, M. N. Goda, Chem. Phys. Lett. 2018, 703, 44.
[22] M. Mayoral, M. Izquierdo, J. Andress, B. Rubio, Thermochim. Acta 2001,
373, 173.
[23] B. Caglar, J. Mol. Struct. 2012, 1020, 48.
[24] J. D. Russell, in Infrared Methods—A Hand Book of Determinative
Methods in Clay Mineralogy (Ed: M. J. Wilson), Blackie and Son Ltd.,
New York 1987.
[25] S. J. Brunauer, L. S. Deming, W. Deming, J. Teller, Amer. Chem. Soc.
1940, 62, 1723.
4
| CONCLUSIONS
[26] J. H. de Boer, E. P. Everette, F. S. Stone Eds., The Structure and Properties
of Porous Materials, Butterworths, London 1985, p. 68.
[27] A. A. Said, M. M. Abd El-Wahab, M. N. Goda, Appl. Surf. Sci. 2016,
390, 649.
From the above experiments, the following conclusions can
be drawn:
[28] M. H. Badr, M. El-Kemary, F. A. Ali, R. Ghazy, J. Chin. Chem. Soc. 2018,
[29] A. A. Said, M. N. Goda, Catal. Lett. 2018) Accepted Manuscript. https://
[30] A. A. Said, M. M. Abd El-Wahab, S. A. Soliman, M. N. Goda, Nanosci.
Nanoeng. 2014, 2, 17.
[31] A. A. Said, M. M. Abd El-Wahab, A. M. Alian, Catal. Lett. 2016, 146, 82.
[32] A. A. Said, J. Chem. Technol. Biotechnol. 2003, 78, 733.
[33] A. A. Said, M. M. Abd El-Wahab, A. M. Alian, J. Chem. Technol. Biotech-
nol. 2007, 82, 513.
• According to the TG and DTA results, the basaltic sam-
ples are stable on heating from room temperature
to 600ꢀC.
• Acidity measurements showed that the basaltic samples
are acid catalysts with intermediate strength of Brønsted
acid sites and the acidity of the three samples follows the
order B3 > B2 > B1.
[34] A. Nagvenkar, S. Naik, J. Fernandes, Catal. Commu. 2015, 65, 20.
[35] S. K. Samantray, K. M. Parida, Appl. Catal. A 2001, 211, 175.
[36] J. Das, K. M. Parida, J. Mol. Catal. A: Chem. 2007, 264, 248.
[37] V. V. Mall, M. P. Deosarkar, Int. J. Adv. Sci. Eng. Technol. 2016, 4,
2321.
• n-Butyl ester is the only product from the reaction of
acetic acid with n-butanol over the basaltic samples; also
B3 is the most active catalyst with 80% yield and 100%
selectivity.