10.1002/adsc.201901160
Advanced Synthesis & Catalysis
followed by sequential Claisen rearrangement and the
elimination of TsNH2 to afford the desired product.
C. Wang, P. Lu, Y. Wang, Org. Lett. 2017, 19, 1630-
1633; h) Z. Du, Y. Xing, P. Lu, Y. Wang, Org. Lett.
2015, 17, 1192-1195; i) H. Ding, S. Bai, P. Lu, Y.
Wang, Org. Lett. 2017, 19, 4604-4607; j) J. Qi, Z.
Wang, B. Lang, P. Lu, Y. Wang, J. Org. Chem. 2017,
82, 12640-12646; k) G. Sheng, S. Ma, S. Bai, J. Mao, P.
Lu, Y. Wang, Chem.Commun. 2018, 54, 1529-1532; l)
Y. Zhou, Z. Li, F. Ma, C. Zhao, P. Lu, Y. Wang, J. Org.
Chem. 2019, 84, 6655-6668; m) J. Qian, Z. Lin, Z.
Wang, Z. Peng, L. Wu, P. Lu, Y. Wang, J. Org. Chem.
2019, 84, 6395-6404.
Experimental Section
General procedure
To a 10-mL oven-dried test tube was added in a magnetic
stirring stone. Then, 4.0 mol% Rh2(OAc)4, 0.28 mmol 3-
diazoindolin-2-imine compound 1, 0.1 mmol 1-aryl-
substituted allylic alcohols compound 2 and 2 mL
toluene were added. The reaction mixture was stirred for
13 hours at 85 °C. After the reaction finished, 2 mL EtOAc
was added. Then, adding 1g silicon gel and evaporating the
solvent in vacuo. The residue was purified by flash column
chromatography on silica gel. (gradient eluent: Petroleum
ether/EtOAc/ Dichloromethane = 30:1:1~8:1:1)
[5] a) S. Kim, H, Kim, K. Um, P. H. Lee, J. Org. Chem.
2017, 82, 9808-9815; b) G. Ko, J. Son, H. Kim, C.
Maeng, Y. Baek, B. Seo, K. Um, P. H. Lee, Adv. Synth.
Catal. 2017, 359, 3362-3370; c) Y. Baek, C. Maeng, H.
Kim, P. H. Lee, J. Org. Chem. 2018, 83, 2349-2360. d)
Y. Baek, Y. Kwon, C. Maeng, J. H. Lee, H. Hwang, K.
M. Lee, P. H. Lee, J. Org. Chem. 2019, 84, 3843-3852.
[6] H. Wang, L. Li, S.Yu, Y. Li, X. Li, Org. Lett. 2016, 18,
2914-2917.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (21642004) and the Priority Academic Program
Development of Jiangsu Higher Education Institutions (PAPD)
for financial support. We thank Prof. Bo Song for helpful
discussion on the photophysical results.
[7] L. Wang, Y. Wu, Y. Liu, H. Yang, X. Liu, J. Wang, X.
Li, J. Jiang, Org. Lett. 2017, 19, 782-785.
[8] a) F. Sieber, Photochem. Photobiol. 1987, 46, 1035-
1042; b) K. Sayama, K. Hara, N. Mori, M. Satsuki, S.
Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, H. Arakawa,
Chem. Commun. 2000, 1173-1174; c) F. Würthner, S.
Yao, T. Debaerdemaeker, R. Wortmann, J. Am. Chem.
Soc. 2002, 124, 9431-9447; d) A. Kulinich, A.
Ishchenko, Russ. Chem. Rev. 2009, 78, 141-164; e) L.
Brooker, G. Keyes, R. Sprague, R. Vandyke, E. Vanlare,
G. Vanzandt, F. White, J. Am. Chem. Soc. 1951, 73,
5326-5332.
References
[1] a) J. Wilson, R. Kurukulasuriya, M. Reibarkh, M.
Reiter, A. Zwicker, K. Zhao, F. Zhang, R. Anand, V.
Colandrea, A. Cumiskey, A. Crespo, R. Duffy, B.
Murphy, K. Mitra,D. Johns, J. Duffy, P. Vachal, ACS
Med. Chem. Lett. 2016, 7, 261-265; b) W. Yang, Y.
Wang, A. Lai, J. Qiao, T. Wang, J. Hua, L. Price, H.
Shen, X. Chen, P. Wong, E. Crain, C. Watson, C.
Huang, D. Seiffert, R. Rehfuss, R. Wexler, P. Lam, J.
Med. Chem. 2014, 57, 6150-6164; c) J. F. M. da Silva,
S. J. Garden, A. C. Pinto, J. Braz. Chem. Soc. 2001, 12,
273-324; d) F. Zhou, Y. Liu, J. Zhou, Adv. Synth. Catal.
2010, 352, 1381-1407.
[2] a) S. Cacchi , G. Fabrizi, Chem. Rev. 2005, 105,
2873-2920; b) L. Joucla, L. Djakovitch, Adv. Synth.
Catal. 2009, 351, 673-714; c) M. Bandini, A.
Eichholzer, Angew. Chem., Int. Ed. 2009, 48, 9608-
9644; d) G. Bartoli, G. Bencivenni, R. Dalpozzo, Chem.
Soc. Rev. 2010, 39, 4449-4465; e) R. Dalpozzo, Chem.
Soc. Rev. 2015, 44, 742-778; f) J. Leitch, Y. Bhonoah,
C. Frost, ACS Catal. 2017, 7, 5618-5627.
[9] A. Buzas, J. Merour, Synthesis. 1989, 6, 458-461.
[10] Z. Krasnaya, T. Stytsenko, Russ. Chem. Bull. 1987, 36,
748-754.
[11] a) A. Wetzel, F. Gagosz, Angew. Chem. Int. Ed. 2011,
50, 7354-7358; b) T. Miura, T. Tanaka, T. Biyajima, A.
Yada, M. Murakami, Angew. Chem. Int. Ed. 2013, 52,
3883-3886; c) J. Wood, G. Moniz, D. Pflum, B. Stoltz,
A. Holubec, H. Dietrich, J. Am. Chem. Soc. 1999, 121,
1748-1749; d) J. Wood, G. Moniz, Org. Lett., 1999, 1,
371-374; e) T. Miura, T. Tanaka, K. Matsumoto, M.
Murakami, Chem. Eur. J. 2014, 20, 16078-16082.
[12] CCDC-1947908 (3aa) contains the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge
[3] a) Q. Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle,
Chem. Soc. Rev. 2017, 46, 5425-5443; b) H. D. Khanal,
R. S. Thombal, S. M. B. Maezono, Y. R. Lee, Adv.
Synth. Catal. 2018, 360, 3185-3212; c) R. S. Thombal,
S. T. Kim, M. H. Baik, Y. R. Lee, Chem. Commun.
2019, 55, 2940—2943; d) H. D. Khanal, S. H. Kim, Y.
R. Lee, RSC Adv. 2016, 6, 58501-58510.
Crystallographic
[13] More catalysts screening was shown in Table S1.
Data
Centre
via
[14] The Rh(II)-catalyzed reaction of 1a with 2l could be
scaled up to gram scale with 61% yield of 3al.
[4] a) Y. Xing, G. Sheng, J. Wang, P. Lu, Y. Wang, Org.
Lett. 2014, 16, 1244-1247; b) G. Sheng, K. Huang, Z.
Chi, H. Ding, Y. Xing, P. Lu, Y. Wang, Org. Lett. 2014,
16, 5096-5099; c) C. Wang, H. Zhang, B. Lang, A. Ren,
P. Lu, Y. Wang, Org. Lett. 2015, 17, 4412-4415; d) G.
Sheng, K. Huang, S. Ma, J. Qian, P. Lu, Y. Wang,
Chem.Commun. 2015, 51, 11056-11059; e) J. Qian, G.
Sheng, K. Huang, S. Liu, P. Lu, Y. Wang, Org. Lett.
2016, 18, 3682-3685; f) Z. Li, X. Zhou, P. Lu, Y. Wang,
J. Org. Chem. 2016, 81, 9433-9437; g) B. Lang, H. Zhu,
[15] See Supporting Information for computational details.
[16] A distortion/interaction analysis for TS2 and TS2’
was performed to gain an insight on the chemo-
selectivity (Figure S1).
[17] Molecular orbitals of 3aa are shown in Figure S3.
5
This article is protected by copyright. All rights reserved.