Journal of the American Chemical Society
Communication
(
2) For the isolation of the thapsigargins, see: (a) Rasmussen, U.;
Scheme 3. 10-Step Total Synthesis of Nortrilobolide (3) from
Christensen,S.B.;Sandberg,F.ActaPharm.Suec.1978,15,133.(b)Smitt,
U. W.;Christensen, S.B.PlantaMed. 1991,57,196.(c)Liu,H.;Jensen,K.
G.;Tran,L.M.;Chen,M.;Zhai,L.;Olsen,C.E.;Søhoel,H.;Denmeade,S.
R.; Isaacs, J. T.; Christensen, S. B. Phytochemistry 2006, 67, 2651.
(R)-(−)-Carvone
(3) (a) Christensen, S. B.;Larsen, I. K.;Rasmussen, U.; Christophersen,
C. J. Org. Chem. 1982, 47, 649. (b) Christensen, S. B.; Norup, E.
Tetrahedron Lett. 1985, 26, 107.
(
4) SCIFINDER, American Chemical Society (Searched by research
topic ‘thapsigargin’ on February 18, 2017).
5)Thastrup, O.; Cullen, P. J.;Drøbak, B. K.;Hanley, M. R.;Dawson, A.
P. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 2466.
6)Treiman,M.;Caspersen,C.;Christensen,S.B.TrendsPharmacol.Sci.
998, 19, 131.
7) Christensen, S. B.; Skytte, D. M.; Denmeade, S. R.; Dionne, C.;
Moller, J. V.; Nissen, P.; Isaacs, J. T. Anti-Cancer Agents Med. Chem. 2009,
, 276.
8)For the synthesis ofMipsagargin (5), see: Lynch, J. K.;Hutchison, J.
J.; Fu, X.; Kunnen, K. Methods of Making Cancer Compositions. WO
(
(
1
(
butyldimethylsilyl protecting group under mild acidic conditions
furnished an allylic alcohol intermediate, which was subjected to
the same Yamaguchi acylation described above to provide
9
(
10a
nortrilobolide (3) in 78% yield over two steps (Scheme 3).
Overall, the total syntheses of thapsigargin (1) and
nortrilobolide (3) were accomplished in 12 and 10 steps,
respectively (longest linear sequence: 5.8% and 13.3% overall
yield) from commercially available (R)-(−)-carvone (10).
Notably, the total syntheses were accomplished in less than one-
third of the number of steps required by Ley and co-workers (42
and36steps, respectively)andsignificantlymoreefficient(40and
2
014145035A1, September 18, 2014.
(9)Crestey, F.;Toma, M.;Christensen, S. B. TetrahedronLett. 2015, 56,
5896.
(10) For total syntheses of thapsigargin (1) and nortrilobolide (3), see:
(
̈
a) Oliver, S. F.; Hogenauer, K.; Simic, O.; Antonello, A.; Smith, M. D.;
Ley, S. V. Angew. Chem., Int. Ed. 2003, 42, 5996. (b) Ball, M.; Andrews, S.
P.; Wierschem, F.; Cleator, E.; Smith, M. D.; Ley, S. V. Org. Lett. 2007, 9,
3
0 times, respectively) than the syntheses recently reported by
6
63. (c) Andrews, S. P.; Ball, M.; Wierschem, F.; Cleator, E.; Oliver, S.;
Baran and co-workers. Furthermore, the five-step synthesis of 7
Hogenauer,K.;Simic,O.;Antonello,A.;Hunger,U.;Smith,M.D.;Ley,S.
̈
̈
represents one of the shortest approaches to the guaianolide
V. Chem. - Eur. J. 2007, 13, 5688. (d) Chu, H.; Smith, J. M.; Felding, J.;
Baran, P. S. ACS Cent. Sci. 2017, 3, 47.
24
skeleton developed to date, which we anticipate will allow the
rapid preparation of alibrary of simplifiedthapsigargin analogs for
detailed structure−activity relationship studies. In addition, it is
envisioned that this approach could provide the basis for a
manufacturingroutetothisimportantagent,particularlygiventhe
brevity and scalability of the synthesis. Finally, we believe that this
strategy will provide a useful guide for the construction of related
polyoxygenated terpenes.
(
11) For synthetic approaches to the thapsigargins, see: (a) Ley, S. V.;
Antonello, A.; Balskus, E. P.; Booth, D. T.; Christensen, S. B.; Cleator, E.;
Gold, H.; Hogenauer, K.; Hunger, U.; Myers, R. M.; Oliver, S. F.; Simic,
O.;Smith,M.D.;Søhoel,H.;Woolford,A.J.A.Proc.Natl.Acad.Sci.U.S.A.
004, 101, 12073. (b) Kaliappan, K. P.; Nandurdikar, R. S. Org. Biomol.
̈
̈
2
Chem. 2005, 3, 3613. (c)Manzano, F. L.;Guerra, F. M.;Moreno-Dorado,
F. J.; Jorge, Z. D.; Massanet, G. M. Org. Lett. 2006, 8, 2879. (d) Tap, A.;
Jouanneau, M.; Galvani, G.; Sorin, G.; Lannou, M.-I.; Ferezou, J.-P.;
́ ́
Ardisson, J. Org. Biomol. Chem. 2012, 10, 8140. (e) Marín-Barrios, R.;
García-Cabeza, A. L.; Moreno-Dorado, F. J.; Guerra, F. M.; Massanet, G.
M. J. Org. Chem. 2014, 79, 6501. (f) Doan, N. T. Q.;Crestey, F.;Olsen, C.
E.; Christensen, S. B. J. Nat. Prod. 2015, 78, 1406.
(12) Andersen, T. B.; Martinez-Swatson, K. A.; Rasmussen, S. A.;
ASSOCIATED CONTENT
Supporting Information
■
*
S
Experimental procedures, spectral data and copies of
Crystallographic data (CIF)
(
13) (a) Yang, H.; Gao, Y.; Qiao, X.; Xie, L.; Xu, X. Org. Lett. 2011, 13,
670. (b) Hu, X.; Xu, S.; Maimone, T. J. Angew. Chem. Int. Ed. 2017, 56,
1624.
3
AUTHOR INFORMATION
ORCID
Notes
The authors declare no competing financial interest.
(14) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am.
Chem. Soc. 1987, 109, 8056.
(15)Pisoni,D.S.;Gamba,D.;Fonseca,C.V.;DaCosta,J.S.;Petzhold,C.
L.; De Oliveira, E. R.; Ceschi, M. A. J. Braz. Chem. Soc. 2006, 17, 321.
(16) Braun, M.; Meier, T.; Laicher, F.; Meletis, P.; Fidan, M. Adv. Synth.
Catal. 2008, 350, 303.
(
3
(
2
17) Wolinsky, J.; Slabaugh, M. R.; Gibson, T. J. Org. Chem. 1964, 29,
740.
18) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem. Rev.
014, 114, 5959.
ACKNOWLEDGMENTS
■
Dedicated to Professor Stephen F. Martin for his outstanding
contributionstonaturalproductchemistry.Wesincerelythankthe
National Sciences and Engineering Research Council (NSERC)
foraDiscoveryGrantandQueen’sUniversityforgenerousfinancial
support. NSERC is also thanked for supporting a Tier 1 Canada
Research Chair (P.A.E.).
(19) McMurry, J. E. Chem. Rev. 1989, 89, 1513.
(20) Raw, A. S.; Pedersen, S. F. J. Org. Chem. 1991, 56, 830.
(21) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 18, 1071.
(22)Evans,P.A.;Roseman,J.D.;Garber,L.T.Synth.Commun.1996,26,
4685.
(
23)Søhoel, H.;Jensen, A.-M. L.;Møller, J. V.;Nissen, P.;Denmeade, S.
R.; Isaacs, J. T.; Olsen, C. E.; Christensen, S. B. Bioorg. Med. Chem. 2006,
4, 2810.
24)Forarecentreview,see:Santana,A.;Molinillo,J.M.G.;Macías,F.A.
Eur. J. Org. Chem. 2015, 2093.
1
(
REFERENCES
■
(
1)Forarecentreviewonthapsigargin,see:Doan,N.T.Q.;Christensen,
S. B. Curr. Pharm. Des. 2015, 21, 5501.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX