10.1002/chem.201700617
Chemistry - A European Journal
FULL PAPER
as reference in CD spectrometry. The samples in the quartz cuvette were
stored at 25 °C during the whole period of the spectroscopic
investigations. Time-dependent optical rotation, UV-Vis, CD and
fluorescence spectra were recorded at selected or random intervals.
Unless otherwise specified, the concentration of the polymer used for all
spectroscopic measurements was 5 mg/mL (10.2 mM) based on repeat
unit. PNDI solution was prepared by dissolving pre-weighed amount of
the polymer in DMSO by heating in oil bath at 185 °C for 2 min. The first
spectroscopic measurement was performed just after the newly-prepared
polymer solution was cooled down to 25 °C within about 13 min.
[2]
a) R. E. Dawson, A. Hennig, D. P. Weimann, D. Emery, V. Ravikumar,
J. Montenegro, T. Takeuchi, S. Gabutti, M. Mayor, J. Mareda, C. A.
Schalley, S. Matile, Nat. Chem. 2010, 2, 533-538; b) Y. Zhao, Y.
Cotelle, A. J. Avestro, N. Sakai, S. Matile, J. Am. Chem. Soc. 2015, 137,
11582-11585; c) N. Sakai, P. Charbonnaz, S. Ward, S. Matile, J. Am.
Chem. Soc. 2014, 136, 5575-5578; d) C. Wang, F. N. Miros, J. Mareda,
N. Sakai, S. Matile, Angew. Chem. Int. Ed. 2016, 55, 14286-14290. e)
K. Dirian, S. Backes, C. Backes, V. Strauss, F. Rodler, F. Hauke, A.
Hirsch, D. M. Guldi, Chem. Sci. 2015, 6, 6886-6895; f) A. Rananaware,
M. Samanta, R. S. Bhosale, M. A. Kobaisi, B. Roy, V. Bheemireddy, S.
V. Bhosale, S. Bandyopadhyay, S. V. Bhosale, Sci. Report 2016, 6,
22920.
Synthesis of PNDI through polycondensation of NDA and MAPA. To
a flame-dried 100-mL three-necked flask equipped with a mechanical
stirrer, was charged NDA (1.341 g, 5.0 mmol), MAPA (1.154 g, 5.0
mmol), DMAc (30 mL), and triethylamine (0.75 mL, 5.0 mmol) under N2
flow. The mixture was mechanically stirred at 80 °C for 5 h. Then,
triethylamine (0.75 mL, 5.0 mmol) and Ac2O (1.5 mL, 10 mmol) was
added to the reaction solution followed by stirring for another 2 h. The
resulting solution was poured into excess methanol and filtrated to give
pale yellow powder (1.91 g), yield 82.7%. Mn = 4925, DP = 11.5
(calculated from 1H NMR). PNDI was soluble in H2SO4 at room
temperature and in polar aprotic solvents NMP, DMSO, DMF, and DMAc
on heating. However, PNDI was insoluble in solvents like THF, MeCN,
dichloromethane, and methanol. 1H NMR (300 MHz, DMSO-d6): δ8.92–
8.31 (m, 4H), 7.58–6.92 (m, 4H), 6.09 (s, 0.8H), 5.97 (s, 0.2 H), 3.70 (s,
3H), 3.56–3.17 (m, 2H). 13C NMR (100 MHz, DMSO-d6): δ168.44, 161.63,
137.29, 133.14, 130.44, 129.63, 128.78, 128.34, 128.01, 118.71, 53.81,
51.55, 33.82. FT-IR (KBr): ν 1713 cm−1 (imide C = O, symmetrical
stretching), 1673 cm−1 (imide C = O, asymmetrical stretching), 770 cm−1
(imide ring deformation) and 1343 cm−1 (C-N stretching).
[3]
[4]
a) Z. Chen, Q. Wang, X. Wu, Z. Li, Y. Jiang, Chem. Soc. Rev. 2015, 44,
4249-4263; b) P. Lesot, C. Aroulanda, H. Zimmermann, Z. Luz, Chem.
Soc. Rev. 2015, 44, 2330-2375; c) Y. Zhou, J. Yoon, Chem. Soc. Rev.
2012, 41, 52-67.
a) G. Lautrette, B. Wicher, B. Kauffmann, Y. Ferrand, I. Huc, J. Am.
Chem. Soc. 2016, 138, 10314-10322; b) H. Huang, G. Bian, H. Zong, Y.
Wang, S. Yang, H. Yue, L. Song, H. Fan, Org. Lett. 2016, 18, 2524-
2527; c) H. Cao, X. Zhu, M. Liu, Angew. Chem. Int. Ed. 2013, 52, 4122-
4126; d) L. J. Fernández, Á. L. F. de Arriba, L. M. Monleón, O. H. Rubio,
V. A. Montero, L. S. Rubio, J. R. Morán, Eur. J. Org. Chem. 2016,
1541-1547; e) F. Ulatowski, J. Jurczak, J. Org. Chem. 2015, 80, 4235-
4243; f) K. P. Nandre, S. V. Bhosale, K. V. S. Rama Krishna, A. Gupta,
S. V. Bhosale, Chem. Commun. 2013, 49, 5444-5446.
[5]
[6]
a) H. Luo, Z. Liu, Z. Cai, L. Wu, G. Zhang, C. Liu, D. Zhang, Chin. J.
Chem. 2012, 30, 1453-1458; b) D. Sriramulu, S. Valiyaveettil, Dyes
Pigm. 2016, 134, 306-314; c) J. Liu, Y. Shan, C. Fan, M. Lin, C. Huang,
W. Dai, Inorg. Chem. 2016, 55, 3680-3684.
a) S. Guha, F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier, S.
Saha, J. Am. Chem. Soc. 2011, 133, 15256-15259; b) S. Guha, F. S.
Goodson, L. J. Corson, S. Saha, J. Am. Chem. Soc. 2012, 134, 13679-
13691; c) E. Dimitrijevic, O. Kvak, M. S. Taylor, Chem. Commun. 2010,
46, 9025-9027; d) M. G. Chudzinski, C. A. McClary, M. S. Taylor, J. Am.
Chem. Soc. 2011, 133, 10559-10567.
Preparation of samples for enantiomeric recognition of chiral acids.
The DMSO solutions of chiral acids tested were prepared by dissolving
an enantiomer of a chiral acid in DMSO at 58.7 mM unless otherwise
specified. The concentration of chiral acid 9, 11 and 12 or corresponding
salts were set at 29.3 mM since these compounds were diacids. The
concentration of chiral acid 15 and 21 were set at 46.8 mM because of
their limited solubility in DMSO. The solutions of chiral acid sodium salts
were prepared by neutralizing corresponding acid in DMSO with
equivalent NaHCO3. Samples for acid recognition were prepared by
dissolving 10 mg of PNDI in 2mL of DMSO solution of chiral acid or its
sodium salt in a glass vial by heating in oil bath at 185 °C for 2 min. The
resultant concentration of PNDI was 10.2 mM based on repeat unit. The
first spectroscopic measurement was performed just after the newly-
prepared polymer solution was cooled down to 25 °C within about 13 min.
The sample (0.06 mL) was carefully filled in a demountable quartz
cuvette with 0.1 mm path length for spectroscopic measurements.
[7]
[8]
[9]
a) S. Guha, F. S. Goodson, R. J. Clark, S. Saha, CrystEngComm 2012,
14, 1213-1215; b) L. Shen, X. Lu, H. Tian, W. Zhu, Macromolecules
2011, 44, 5612-5618.
a) H. Shao, M. Gao, S. H. Kim, C. P. Jaroniec, J. R. Parquette, Chem.
Eur. J. 2011, 17, 12882-12885; b) J. Gawroński, M. Brzostowska, K.
Kacprzak, H. Kołbon, P. Skowronek, Chirality 2000, 12, 263-268.
a) M. Kumar, S. J. George, Nanoscale 2011, 3, 2130-2133; b) K. P.
Nandre, M. A. Kobaisi, R. S. Bhosale, K. Latham, S. V. Bhosale, S. V.
Bhosale, RSC Adv. 2014, 4, 40381-40384; c) C. Kulkarni, S. J. George,
Chem. Eur. J. 2014, 20, 4537-4541; d) H. Shao, T. Nguyen, N. C.
Romano, D. A. Modarelli, J. R. Parquette, J. Am. Chem. Soc. 2009, 131,
16374-16376.
[10] a) M. You, X. Yuan, X. Fang, M. Lin, Supramol. Chem. 2015, 27, 460-
464; b) X. Fang, X. Yuan, Y. Song, J. Wang, M. Lin, CrystEngComm
2014, 16, 9090-9095; c) T. J. Mooibroek, P. Gamez, J. Reedijk,
CrystEngComm 2008, 10, 1501-1515.
Acknowledgements
[11] a) M. B. Avinash, T. Govindaraju, Adv. Func. Mater. 2011, 21, 3875-
2882; b) P. Pengo, G. D. Pantoş, S. Otto, J. K. M. Sanders, J. Org.
Chem. 2006, 71, 7063-7066; c) P. Jana, S. K. Maity, S. Bera, R. K.
Ghorai, D. Haldar, CrystEngComm 2013, 15, 2512-2518.
This work was financially supported by the National Natural
Science Foundation of China (21574126 and 21274142) and the
National Basic Research Program of China (973 Program)
(2014CB643603).
[12] a) B. Vögeli, Prog. Nucl. Magn. Res. Spectrosc. 2014, 78, 1-6; b) M.
Nilges, M. J. Macias, S. I. O’Donoghue, H. Oschkinat, J. Mol. Biol. 1997,
269, 408-422; c) J. W. Keepers, T. L. James, J. Magn. Reson. 1984, 57,
404-426.
Keywords: molecular recognition • self-assembly • anion–π
[13] a) D. Leitz, B. Vögeli, J. Greenwald, R. Riek, J. Phys. Chem. B 2011,
115, 7648-7660; b) G. Fragaki, I. Stefanaki, P. Dais, E. Mikros, Magn.
Reson. Chem. 2008, 46, 1102-1111; c) Y. Wu, B. Canturk, H. Jo, C. Ma,
E. Cianti, M. L. Klein, L. H. Pinto, R. A. Lamb, G. Fiorin, J. Wang, W. F.
DeGrado, J. Am. Chem. Soc. 2014, 136, 17987-17995.
interactions • naphthalenediimides • chiral acids
[1]
a) M. B. Avinash, T. Govindaraju, Adv. Mater. 2012, 24, 3905-3922; b)
S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev. 2008, 37,
331-342; c) P. Ballester, Acc. Chem. Res. 2013, 46, 874-884.
This article is protected by copyright. All rights reserved.